

Figure S1: Ploidy and breeding system data according to three different classifications. For ploidy only models, classifications with states D and P were used (inner circle). For breeding system models classifications with states I and C were used (middle circle). For ploidy and breeding system models classifications using ID, CD, CP were used (outer circle). Data with missing information in one of the traits was classified simultaneously as two possible states, for example, diploids without breeding system ?D were classified as (CD, CP)).

Figure S2: Twenty-nine models of diversification are proposed for the study of ploidy, breeding systems, and hidden states linked to the process of diversification. We divide the models by the type of focal trait studied (ploidy only, breeding system only, or ploidy and breeding system). The contributions of the focal trait to the diversification process can be measured by comparing the models in each of the columns. That is, the focal trait only models assume that speciation and extinction rates are only linked to the trait itself, the hidden trait only models assume that the diversification rates are linked to unknown factors but not the trait of interest, and the focal trait with hidden trait models assume that both the focal trait and unknown factors are contributing to diversification. (large format figure)

What is the focal trait?

	Ploidy only		Breeding system only	Ploidy and b	reeding system	em Ploidy only (lumped) Breeding sys		
	no diploidization	with diploidization		no diploidization	with diploidization			
	M1. D/P	M6. D/P+ δ	M11. I/C	M16. ID/CD/CP	M21. ID/CD/CP + δ	M26. Lumped D/P	M28. Lumped I/C	
Focal trait only	λ_D ρ ρ λ_P	λ_D ρ ρ λ_P	λ_{l} I Q_{lC} λ_{c}	μ_{ID} λ_{ID} λ_{ID} λ_{ID} λ_{CD} λ_{CD} λ_{CD} λ_{CP} λ_{P}	μ_{ID} λ_{ID}	$\lambda_{D} \xrightarrow{\qquad \qquad } CD \xrightarrow{\qquad \qquad } \lambda_{P}$	λ_1 Q_0	
	M2. CID D/P	M7. CID D/P + δ	M12. CID I/C	M17. CID ID/CD/CP $\mu_A \lambda_A$	M22. CID ID/CD/CP + δ			
Hidden trait only	$ \begin{array}{ccc} \mu_{A} & \lambda_{A} \\ \hline D_{A} & \rho & P_{A} \end{array} $ $ \begin{array}{ccc} \alpha & \beta & \alpha & \beta \end{array} $	$ \begin{array}{ccc} \mu_{A} & \lambda_{A} \\ \hline D_{A} & \rho & P_{A} \end{array} $ $ \begin{array}{ccc} \alpha & \beta & \alpha & \beta \end{array} $	$ \begin{array}{ccc} \mu_{A} & \lambda_{A} \\ & & & \\ \hline I_{A} & & & \\ \hline q_{IC} & & & \\ \hline \alpha & & & \\ \hline \beta & & & & \\ \hline \alpha & & & \\ \hline \beta & & & & \\ \end{array} $	$ \begin{array}{c cccc} \rho_{I} & & \\ \hline ID_{A} & q_{IC} & CD_{A} & \rho_{C} & CP_{A} \end{array} $ $ \begin{array}{c cccc} \alpha & \beta & \alpha & \beta & \alpha & \beta \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
ication?	D_B ρ P_B μ_B λ_B	$ \begin{array}{c c} \hline D_B & \rho \\ \hline B_B & \delta \end{array} $ $ \begin{array}{c c} \mu_B & \lambda_B \end{array} $	$ \begin{array}{c c} I_B & Q_{IC} \\ \downarrow & Q_{IC} \end{array} $ $ \begin{array}{c c} \mu_B & \lambda_B \end{array} $	$\begin{array}{c c} \hline ID_B & q_{IC} & CD_B & \rho_C \\ \hline \rho_I & & \\ \mu_B & \lambda_B & \\ \end{array}$	$\begin{array}{c c} & q_{IC} & CD_B & \rho_C \\ \hline \rho_I & & \delta \\ \hline \rho_B & \lambda_B \end{array}$			
liversif	M3. D/P + A/B	M8. D/P + A/B + δ	M13. I/C + A/B	M18. ID/CD/CP + A/B	M23. ID/CD/CP + A/B + δ			
affects o	$ \begin{array}{c c} \mu_{D_A} & \rho & \mu_{P_A} \\ \lambda_{D_A} & \rho & \lambda_{P_A} \end{array} $ $ \begin{array}{c c} \alpha & \alpha & \alpha \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} \mu_{I_A} & \mu_{C_A} \\ \lambda_{I_A} & q_{IC} & C_A & \lambda_{C_A} \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
What	$\lambda_{D_B} \qquad D_B \qquad \rho \qquad \lambda_{P_B}$ $\mu_{D_B} \qquad \mu_{P_B}$	λ_{D_B} D_B ρ	$\lambda_{I_B} \qquad I_B \qquad Q_{IC} \qquad C_B \qquad \lambda_{C_B}$ $\mu_{I_B} \qquad \mu_{C_B}$	$\lambda_{ID_B} \qquad ID_B \qquad Q_{IC} \qquad CD_B \qquad \rho_C \qquad CP_B \qquad \lambda_{CP_B}$ $\mu_{ID_B} \qquad \lambda_{CD_B} \qquad \lambda_{CD_B} \qquad \mu_{CP_B}$	$\lambda_{ID_{B}} \qquad ID_{B} \qquad Q_{IC} \qquad CD_{B} \qquad \delta \qquad Q_{CP_{B}}$ $\mu_{ID_{B}} \qquad \lambda_{CD_{B}} \qquad \lambda_{CP_{B}}$ $\rho_{I} \qquad Q_{CD_{B}} \qquad Q_{CP_{B}} \qquad Q_{CP_{B}}$			
	M4. D/P + A/B asym	M9. D/P + A/B + δ asym	M14. I/C + A/B asym	M19. ID/CD/CP + A/B asym	M24. ID/CD/CP + A/B + δ asym	M27. Lumped D/P + A/B $ \lambda_{D_A} \qquad \qquad \mu_{P_A} \qquad \qquad \lambda_{P_A} \qquad \qquad \lambda_{P_A} $ $ \downarrow D_A \qquad \qquad \downarrow Q_{IC} \qquad \qquad $	M29. Lumped I/C + A/B μ_{I_A} λ_{C_A}	
Focal trait and hidden trait	$ \begin{array}{c cccc} \mu_{D_A} & \rho & \mu_{P_A} \\ \lambda_{D_A} & \rho & \lambda_{P_A} \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} \mu_{I_A} & I_A & q_{IC} \\ \lambda_{I_A} & A & A_{C_A} \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	M5. D/P + A/B all asym	M10. D/P + A/B + δ all asym	M15. I/C + A/B all asym	M20. ID/CD/CP + A/B all asym	M25. ID/CD/CP + A/B + δ all asym	$\mu_{D_{B}}$	μ_{l_B} μ_{C_B}	
	$\begin{array}{c c} \mu_{D_A} & \rho^A & \rho^A \\ \lambda_{D_A} & D_A & \rho^A \\ \alpha & \beta & \alpha \\ \lambda_{D_B} & \rho^B & \rho^B \\ \mu_{D_B} & \rho^B & \rho^B \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
				ρ"ι	ρ [∞] ι			

Figure S3: Posterior distributions for each of the parameters in the ploidy only model (M1). Red color represents diploid state D and blue color represents polyploid state P. (A)Speciation rates. (B) Extinction rates. (C) Net diversification rates (speciation minus extinction from panels A and B). (D) Relative extinction rates (extinction divided by speciation from panels A and B). (E) Polyploidization rate (ρ).

Figure S4: Posterior distributions for each of the parameters in the ploidy and hidden trait model (M4). Red color represents diploid state D and blue color represents polyploid state P. Dark colors represent hidden state A and light colors hidden state B. (A) Speciation rates. (B) Extinction rates. (C) Net diversification rates (speciation minus extinction from panels A and B). (D) Relative extinction rates (extinction divided by speciation from panels A and B). (E) Polyploidization rate (ρ). (F) Transition rates between hidden states (α and β).

Figure S5: Posterior distributions for each of the parameters in the breeding system only model (M11). Green color represents self-incompatible state I and purple color represents self-compatible state C. (A) Speciation rates. (B) Extinction rates. (C) Net diversification rates (speciation minus extinction from panels A and B). (D) Relative extinction rates (extinction divided by speciation from panels A and B). (E) Self-incompatible to self-compatible transition rate (q_IC).

Figure S6: Posterior distributions for each of the parameters in the breeding system and hidden trait model (M14). Green color represents self-incompatible state I and purple color represents self-compatible state A. Dark colors represent hidden state A and light colors hidden state B. (A) Speciation rates. (B) Extinction rates. (C) Net diversification rates (speciation minus extinction from panels A and B). (D) Relative extinction rates (extinction divided by speciation from panels A and B). (E) Self-incompatible to self-compatible transition rate (q_IC). (F) Transition rates between hidden states (α and β).

Figure S7: Posterior distribution for each of the parameters in the ploidy and breeding system model (M16). Green color represents self-incompatible diploid state ID, blue color is the self-compatible and diploid state CD and pink represents self-compatible polyploid state CP. (A) Speciation rates. (B) Extinction rates. (C) Net diversification rates (speciation minus extinction from panels A and B). (D) Relative extinction rates (extinction divided by speciation from panels A and B). (E) Self-incompatible to self-compatible transition rate (q_IC , yellow), polyploidization rate from self-incompatible (ρ_I , light pink), and polyploidization from self-compatible (ρ_C , orange).

Figure S8: Posterior distribution for each of the parameters in the ploidy, breeding system, and hidden trait model (M19). Green color represents self-incompatible diploid state ID, blue color is the self-compatible and diploid state CD and pink represents self-compatible polyploid state CP. Dark colors represent hidden state A and light colors hidden state B. (A) Speciation rates. (B) Extinction rates. (C) Net diversification rates (speciation minus extinction from panels A and B). (D) Relative extinction rates (extinction divided by speciation from panels A and B). (E) Self-incompatible to self-compatible transition rate (q_IC , yellow), polyploidization rate from self-incompatible (ρ_I , light pink), and polyploidization from self-compatible (ρ_c , orange). (F) Transition rates between hidden states (α and β).

Figure S9: Ancestral state estimation showing the maximum *a posteriori* estimates of the marginal probability distributions for each of the 650 internal nodes under the ploidy only model (M1).

Figure S10: Ancestral state estimation showing the maximum *a posteriori* estimates of the marginal probability distributions for each of the 650 internal nodes under the ploidy and hidden states model (M4).

Figure S11: Ancestral state estimation showing the maximum *a posteriori* estimates of the marginal probability distributions for each of the 650 internal nodes under the breeding system only model (M11).

Figure S12: Ancestral state estimation showing the maximum *a posteriori* estimates of the marginal probability distributions for each of the 650 internal nodes under the breeding system and hidden states model (M14.

Figure S13: Ancestral state estimation showing the maximum *a posteriori* estimates of the marginal probability distributions for each of the 650 internal nodes under the ploidy and breeding system model (M16).

Figure S14: Ancestral state estimation showing the maximum *a posteriori* estimates of the marginal probability distributions for each of the 650 internal nodes under the ploidy, breeding systems, and hidden states model (M19).

Figure S15: Testing the addition of breeding system to ploidy models. (A) Ploidy only model (M1) where data enter as binary *D* and *P*. (B) Lumped model for ploidy (M26) where data are the three-state values (*ID*,*CP*,*CD*) but results are equivalent to model M1. (C) Ploidy and breeding system model (M16) where data enter as the three-state values. Models M26 and M16 are comparable whereas M1 and M16 are not. (D) Ploidy and hidden state model (M3) where data enter as binary *D* and *P*. (E) Lumped model for ploidy and hidden state (M27) where data are the three-state values (*ID*,*CP*,*CD*) but results are equivalent to model M3. (F) Ploidy, breeding system, and hidden state model (M18) where data enter as the three-state values. Models M27 and M18 are comparable whereas M3 and M18 are not. Bayes factors comparing the models are shown in Table 3.

Figure S16: Testing the addition of ploidy to breeding system models. (A) Breeding system only model (M11) where data enter as binary *I* and *C*. (B) Lumped model for breeding system (M28) where data are the three-state values (*ID*,*CP*,*CD*) but results are equivalent to model M11. (C) Ploidy and breeding system model (M16) where data enter as the three-state values. Models M28 and M16 are comparable whereas M11 and M16 are not. (D) Breeding system and hidden state model (M13) where data enter as binary *I* and *C*. (E) Lumped model for breeding system and hidden state (M29) where data are the three-state values (*ID*,*CP*,*CD*) but results are equivalent to model M13. (F) Ploidy, breeding system, and hidden state model (M18) where data enter as the three-state values. Models M29 and M18 are comparable whereas M13 and M18 are not. Bayes factors comparing the models are shown in Table 3.

Figure S17: Effect of asymmetric rates in hidden models. First column models M3, M13, and M18 assume that the rates between hidden states are equal. The models in the second column (M4, M14, M19) assume that the rates between hidden states are different. Column three models assumes that the rates between hidden state are asymmetric and that the transition rates within each hidden states are also different. Bayes factors in Table S5 strongly preferred models with stymmetric rates between states (second column) over models with equal rates in hidden states (first column). Models in the second column are moderately or

Figure S18: Posterior distributions for the net diversification rates of the preferred models with diploidization. Red color represents diploid state D, blue color represents polyploid state P, green color represents self-incompatible I, purple color represents self-compatible C, dark colors represent hidden state A and light colors hidden state B. (A) Ploidy only model M6. (B) Ploidy and hidden states model M9 (C) Breeding systems only model M11. (D) Breeding systems and hidden state model M14. (E) Ploidy and breeding systems model M21. (F) Ploidy, breeding systems, and hidden states model M24.

Model	Marginal log-likelihood	M7	M8	M9	M10	Evidence
M6. D/P+δ	-1268.83	55.41	42.78	53.37	52.85	Every model strongly preferred over M6
M7. CID D/P+ δ	-1212.42		-12.62	-2.04	-2.04	Model M7 moderately preferred over M9 and M10
M8. D/P+A/B δ	-1214.46			10.58	10.07	Asymmetric rates strongly preferred over symmetric
M9. D/P+A/B + δ asym	-1214.46				-0.51	No evidence
M10. D/P+A/B + δ all asym	-1214.97					

Table S1: Bayes factors in log-scale of ploidy only models with diplodization. Results indicate that a character independent model (M7) is strongly preferred over model M6 (BiSSE). Model M7 (bold) is also moderately preferred over any of the HiSSE models with asymmetric hidden rates (M9, M10).

Model	Marginal log-likelihood	M18	M19	M20	Evidence
M16. ID/CP/CD	-1459.11	45.11	65.91	63.98	Every model strongly preferred over M16
M17. CID ID/CP/CD	*				
M18. ID/CP/CD+A/B	-1414		20.79	18.87	Asymmetric rates strongly preferred over symmetric
M19. ID/CP/CD +A/B asym	-1393.20			-1.92	Asymmetric hidden rates moderately preferred over all asymmetric
M20. ID/CP/CD +A/B all asym	-1393.12				

Table S2: Bayes factors of ploidy and breeding system without diploidization in log-scale. Results indicate that the model with asymmetric hidden rates (M19, bold) is strongly preferred over M16 and M18 and moderately preferred over the MuHiSSe with all rates asymetric (M20). *Marginal log-likelihood for M17 could not be calculated within allotted computer time.

Model	Marginal log-likelihood	M22	M23	M24	M25	Evidence
M21. ID/CP/CD+δ	-1454.68	55.48	46.031	67.94	65.15	Every model strongly preferred over M21
M22. CID ID/CP/CD+ δ	-1399.201		-9.452	12.45	9.675	Model M24 strongly preferred over M22
M23. ID/CP/CD+A/B δ	-1408.65			21.91	19.12	Asymmetric rates strongly preferred over symmetric
M24. ID/CP/CD +δ asym	-1386.74				-2.78	Asymmetric hidden rates preferred over all asymmetric
M25. ID/CP/CD + δ all asym	-1389.52					

Table S3: Bayes factors of ploidy and breeding system with diploidization in log-scale. Results indicate that the MuHiSSE model with asymmetric hidden rates (M24, bold) is strongly preferred over M21-M23 and moderately preferred over the MuHiSSe with all rates asymmetric (M25).

Model	Marginal	Comparison	V-log(PE(M1 M2)	Preferred
Wodel	log-likelihood	Comparison	K=log(BF(M1,M2)	Model (Evidence)
M1. D/P	-1238.76	M1 vs. M4	60.47	M4 (Strong)
M4. D/P+A/B asym	-1223.28			
M11. I/C	-1309.07	M11 vs. M14	61.35	M14 (Strong)
M14. I/C+A/B asym	-1247.72			
M16. ID/CD/CP	-1459.11	M16 vs. M19	65.90	M19 (Strong)
M19. ID/CD/CP+A/B asym	-1393.20			
M6. D/P+δ	-1283.76	M6 vs. M9	69.3	M9 (Strong)
M9. D/P+A/B+ δ asym	-1214.46			
M21. IC/CD/CP+ δ	-1454.68	M21 vs. M24	68.48	M24 (Strong)
M24. IC/CD/CP+A/B+ δ asym	-1386.20			

Table S4: Test for addition of hidden states in models via Bayes factors (in log-scale). Models with hidden states (M4, M14, M19, M9, M24, bold) are strongly preferred over simpler models that do not include hidden s

Model	Marginal	Comperison	K=log(BF(M1,M2)	Preferred
lviodei	log-likelihood	Companson	K=log(DF(W11,W12)	Model (Evidence)
M3. D/P+A/B	-1234.52	M3 vs. M4	11.239	M4 (Strong)
M4. D/P+ A/B asym	-1223.28	M4 vs. M5	-1.658	M4 (Moderate)
M5. D/P+A/B all asym	-1224.93			
M13. I/C+ A/B	-1270.47	M13 vs. M14	22.75	M14 (Strong)
M14. I/C+ A/B asym	-1247.72	M14 vs. M15	0.05	No evidence
M15. I/C+ A/B all asym	-1247.67			
M18. IC/CD/CP+A/B	-1414.00	M18 vs. M19	20.79	M19 (Strong)
M19. IC/CD/CP+ A/B asym	-1393.21	M19 vs. M20	-1.919	M19 (Moderate)
M20. IC/CD/CP+ A/B all asym	-1395.129			
M8. D/P +A/B+ δ	-1225.05	M8 vs. M9	10.58	M9 (Strong)
M9. D/P+ A/B+ δ asym	-1214.46	M9 vs. M10	-0.52	M10 (Moderate)
M10. D/P+A/B+ δ all asym	-1214.98			
M23. IC/CD/DP+A/B+ δ	-1408.65	M23 vs M24	21.91	M24(Strong)
M24. IC/CD/DP+A/B+ δ asym	-1386.74	M24 vs M25	-2.78	M24 (Moderate)
M25. IC/CD/DP+A/B+ δ all asym	-1389.52			

Table S5: Test for asymmetry of the hidden trait transition rates via Bayes factors. For all models, asymmetric transition rates between hidden trait states are preferred over models with equal rates (bold). Adding more complexity by assuming asymmetry in all rates within both hidden states is not preferred over models with just asymmetry between hidden states.

Model	Marginal	Composison	K=log(BF(M1,M2)	Preferred
Wiodei	log-likelihood	Comparison	K=log(DF(W11,W12)	Model (Evidence)
M1. D/P	-1238.76	M1 vs. M6	65.92	M6 (Strong)
M6. D/P+ δ	-1267.84			
M4. D/P+A/B asym	-1223.28	M4 vs. M9	8.81	M9 (Moderate)
M9. D/P+A/B+ δ asym	-1214.46			
M16. ID/CD/CP	-1459.11	M16 vs. M21	4.41	M21 (Moderate)
M21. ID/CD/CP+ δ	-1454.68			
M19. IC/CD/CP +A/B asym	-1393.20	M19 vs. M24	6.46	M24 (Moderate)
M24. IC/CD/CP+A/B+ δ asym	-1386.20			

Table S6: Test for inclusion of a diploidization rate via Bayes factors. Models with diploidization are moderately preferred over models that do not include a diploidization rate (bold).