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As species richness varies along the tree of life, there is a great interest in identifying factors that affect the rates by which lineages

speciate or go extinct. To this end, theoretical biologists have developed a suite of phylogenetic comparative methods that aim to

identify where shifts in diversification rates had occurred along a phylogeny and whether they are associated with some traits.

Using these methods, numerous studies have predicted that speciation and extinction rates vary across the tree of life. In this

study, we show that asymmetric rates of sequence evolution lead to systematic biases in the inferred phylogeny, which in turn

lead to erroneous inferences regarding lineage diversification patterns. The results demonstrate that as the asymmetry in sequence

evolution rates increases, so does the tendency to select more complicated models that include the possibility of diversification

rate shifts. These results thus suggest that any inference regarding shifts in diversification pattern should be treated with great

caution, at least until any biases regarding the molecular substitution rate have been ruled out.
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As species richness varies along the tree of life, there is a great

interest in identifying factors that affect the rates by which lin-

eages speciate or go extinct. Numerous studies have revealed that

species diversification patterns cannot be explained by constant

speciation and extinction rates, but rather by a more complex

model, in which diversification rates vary across the tree (Stan-

ley et al. 1981; Strathmann and Slatkin 1983; Ricklefs 2003;

Rabosky and Goldberg 2015). Several alternative scenarios may

lead to altered diversification rates across a phylogeny. The emer-

gence of a novel trait could spur rapid radiation, which will be

manifested by a high diversification rate of a certain subclade

compared to the rest of the phylogeny. Other traits, which could

be related to morphological, reproductive, or ecological features

of a lineage, may transition between several alternative states

and these transitions could repeatedly influence speciation and

extinction patterns. Alternatively, shifts in diversification rates

may be trait independent, for example, due to time-related fac-

tors, mass extinctions, or considerations related to species rich-

ness. To quantitatively study the heterogeneity of species richness

across the tree of life, evolutionary biologists have developed a

suit of phylogenetic probabilistic methods that aim to identify

where shifts in diversification rates had occurred along a phy-

logeny and whether they are associated with some traits. Al-

though each of these methods have their strengths and weak-

nesses, they all assume that the given phylogeny (or posterior

set of trees) is correct and is accurately time calibrated. Here,

we demonstrate that variation in the rates of molecular sequence

evolution could introduce artifacts in the reconstructed phylo-

genies that lead to mistaken inferences of diversification rate

shifts.
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A pioneering probabilistic approach for detecting organis-

mal traits that are linked to altered rates of diversification is based

on the Binary State Speciation and Extinction (BiSSE) model

(Maddison et al. 2007). The incorporation of a character evo-

lution process into the likelihood function of a diversification

model allows BiSSE to infer unique speciation and extinction

rates for each character state. Originally, BiSSE was developed

to examine binary traits only. Further development allowed the

examination of multiple states (MuSSE; Fitzjohn 2012), quanti-

tative traits (QuaSSE; Fitzjohn 2010), geographic traits (GeoSSE;

Goldberg et al. 2011), and the differentiation between state tran-

sitions that coincide with speciation events and those that occur

continuously in time along branches of the phylogeny (ClaSSE

and BiSSE-ness; Goldberg and Igić 2012; Magnuson-Ford and

Otto 2012). These “SSE” methods have been widely used to iden-

tify trait-dependent shifts in diversification patterns, and have

been shown to have adequate statistical power, particularly when

large phylogenies are analyzed (Davis et al. 2013). Yet, it has

been demonstrated that this framework tends to incorrectly clas-

sify neutral traits as being associated with shifts in diversification

when empirical phylogenies are analyzed (Rabosky and Gold-

berg 2015). This finding was attributed to factors that are not

included in the model, such as temporal changes in speciation

and extinction rates, or co-distribution with other traits affect-

ing diversification rates (Maddison and Fitzjohn 2015; Rabosky

and Goldberg 2015). Beaulieu and O’Meara (2016) have subse-

quently devised the HiSSE model, which accounts for the exis-

tence of a hidden trait that affects diversification patterns and is

associated with the observed (focal) trait in some parts of the phy-

logeny. In addition, these authors introduced a set of more com-

plex neutral models (termed CID for character-independent di-

versification), which accounts for the possibility of a hidden trait

that affects rates of diversification but that evolves independently

from the focal trait, thus allowing a fairer likelihood comparison

with trait-dependent models.

A parallel suite of methods was developed with the aim to

detect diversification rate shifts along a phylogeny regardless of

a character trait. Of these trait-independent methods, the most

commonly used are MEDUSA (Alfaro et al. 2009) and BAMM

(Rabosky 2014). BAMM is a Bayesian approach based on a re-

versible jump Markov chain Monte Carlo, whereas MEDUSA

uses a stepwise model selection approach to infer the diversi-

fication model that includes the optimal number of rate shifts.

Despite their popularity, each of these methods has been shown

to have some shortcomings. Concerns were raised regarding the

correctness of the likelihood function of MEDUSA, its usage of

the Akaike Information Criterion (AIC) for model selection, bi-

ased inferences of diversification rate parameters, and possible

elevated rate of false inferences of shifts in diversification rates

(May and Moore 2016). Some concerns were also raised regard-

ing BAMM; Moore et al. (2016) pointed to problems with prior

sensitivity, and an error in the likelihood function as it does not

account for unobserved rate shifts along extinct (or nonsampled)

branches (but see Rabosky et al. 2017).

The inference of diversification patterns is tightly linked to

the branch lengths distribution of the studied phylogeny. As ap-

plied in both trait-dependent and trait-independent diversification

analyses, the input phylogeny is assumed to be correct and its

branch lengths proportional to time. However, the precise estima-

tion of the tree topology and divergence times from empirical data

remains highly challenging. Under the molecular clock hypoth-

esis (Zuckerkandl et al. 1965), time calibration of a phylogeny

(i.e., the transformation of a tree that is inferred in units of ex-

pected number of substitutions of molecular characters to time)

can be performed using a single calibration point. More often

than not, however, the constant clock hypothesis is violated and

thus various alternative models have been developed to alleviate

this assumption, including the widely used autocorrelated and un-

correlated relaxed clock models (Thorne et al. 1998; Sanderson

2002; Drummond et al. 2006; Rannala and Yang 2007). Together

with ongoing advances in Bayesian phylogenetics, increasingly

complex clock models can be considered, while integrating over

uncertainties in the phylogeny and model parameters (Bromham

et al. 2018). Nevertheless, dating estimates in Bayesian analyses

are sensitive to nonrandom taxon sampling (Beaulieu et al. 2015),

the sampling fraction (Hugall and Lee 2007; Heath et al. 2008;

Soares and Schrago 2012; Schulte 2013), and the choice of the

tree and clock priors (Ho et al. 2005; Lepage et al. 2007; Linder

et al. 2011; Crisp et al. 2014; Duchêne et al. 2014; Dos Reis et al.

2015; Magallón et al. 2015). For example, assuming a tree prior

that follows the Yule process generally results in older estimates

compared to birth-death prior (Crisp et al. 2014; Condamine et al.

2015). The wide array of methodologies and models for the re-

construction of time-calibrated phylogenies also results in wide

discrepancies in age estimates, as apparent, for example, in the

case of the angiosperms (Magallón et al. 2015). Although the ad-

dition of informative calibration points, especially at deeper time

points, should result in more consistent estimates of divergence

times and reduced sensitivity to model misspecification (Duchêne

et al. 2014), the fossil record is in many cases limited, and con-

structing reliable prior bounds for node ages is highly challenging

(Magallón et al. 2015). Thus, despite ongoing developments of

relaxed clock methods, divergence time estimation from molec-

ular sequence data still suffers from high degrees of uncertainty

(Graur and Martin 2004; Dos Reis et al. 2015; Bromham et al.

2018), especially when variation in the rate of molecular sub-

stitution exists among lineages (Dornburg et al. 2012; Wertheim

et al. 2012; Beaulieu et al. 2015).

Such impact of heterogeneity in the rate of molecular evo-

lution on divergence time estimation was examined by Beaulieu
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et al. (2015), who demonstrated that the age of a crown group

can be largely overestimated when variations in the rate of se-

quence evolution exist near the root of the phylogeny. Similarly,

when applying a time-calibration procedure to a phylogeny that

exhibits high heterogeneity in sequence evolutionary rates due to

a particular character trait (i.e., one state evolves faster than the

other), we would expect that the conversion of branch lengths

to units of time would be biased in such a way that the more

rapidly evolving state will be inferred as being associated with

lower diversification rates. Namely, the state with the higher se-

quence evolutionary rate accumulates more changes per unit of

time, and is therefore represented by longer branch lengths rela-

tive to the slower evolving state. However, under probabilistic di-

versification models, long branch lengths could be interpreted as

having longer intervals of time between speciation events. This

could lead to erroneous association of the faster evolving state

with lower diversification rates and a spurious inference of trait-

dependent diversification. Therefore, heterogeneity in molecular

evolutionary rates could substantially affect not only the infer-

ence of the phylogeny, but also the downstream analyses, partic-

ularly the analyses of diversification patterns—a concern that we

investigate in this study.

Indeed, heterogeneity in sequence evolutionary rates is a

widespread phenomenon even among closely related lineages

(e.g., Tomoko 1995; Moorjani et al. 2016). Molecular evolution-

ary rates could be affected by various factors, including the gener-

ation time (Rutschmann 2006; Baer et al. 2007; Bromham 2009;

Thomas et al. 2010; Ho and Duchêne 2014), DNA repair mech-

anism (Bromham 2009), metabolic rates (Santos 2012), repro-

ductive mode (Paland and Lynch 2006), body size (Fontanillas

et al. 2007; Bromham 2011), plant height (Lanfear et al. 2013),

and plant growth form (Smith and Donoghue 2008). The popula-

tion size is another important factor, as slightly deleterious sub-

stitutions accumulate at higher rates in lineages of smaller effec-

tive population size due to relaxed efficacy of purifying selection

(Ohta 1972; Woolfit and Bromham 2003; Bromham 2009, 2011).

Such factors could lead to substantial variation in the molecu-

lar evolutionary rates throughout the phylogeny. For example,

it was demonstrated that the average substitution rate of herba-

ceous plants is 2.5 times higher compared to woody plants, reach-

ing 4.75 fold difference between the shrub Dorstenia (Moraceae)

and its sister herbaceous clade Urticaceae (Smith and Donoghue

2008). Substitution rate heterogeneity in angiosperms was also

reported to be associated with the life cycle, with annual lineages

exhibiting, on average, 1.6 rate acceleration compared to peren-

nials when internal transcribed spacer sequences were examined,

with some annual/perennial sister pairs exhibiting large rate dif-

ferences of five- to 11-fold (Soria-Hernanz et al. 2008). In inver-

tebrates, surface isopod species were found to evolve up to two

times faster compared to subterranean sister species, with up to

sixfold difference in the synonymous substitution rate between

more distant lineages (Saclier et al. 2018). Johnson and Howard

(2007) reported that slightly deleterious mutations accumulate six

times faster in asexual snail lineages compared to sexual lineages.

Large rate variations are also observed when phylogenetically re-

lated clades are examined irrespective of a focal trait. For ex-

ample, the rate of synonymous substitutions in Arabidopsis was

found to be six times higher than in Populus (Tuskan et al. 2006),

and 15-fold difference was observed in the comparison between

conifers and angiosperms (Buschiazzo et al. 2012). Within mam-

mals, the substitution rate is highly variable even when closely

related species are examined (e.g., sevenfold difference between

Rattus norvegicus and Gerbillus nigeriae) with extreme rate vari-

ation, by as much as two order of magnitude, across the clade

(Nabholz et al. 2008a). Finally, a wide spectrum of heterogene-

ity in the molecular evolutionary rate was also revealed in bac-

teria, with inferred substitution rates ranging by approximately

two order of magnitude (Duchêne et al. 2016). For example, in

Salmonella, bacterial pathogens that are human specialist evolve

2.3-6.6 times higher than generalist species, whereas livestock as-

sociated pathogen species evolved five times faster than its sister

lineage (Duchêne et al. 2016).

Considering the extent of this phenomenon, we suspect that

heterogeneity in molecular evolutionary rates could lead to sys-

tematic biases in the inferred phylogeny and consequently to

erroneous inferences regarding lineage diversification patterns

in many empirical analyses. We further speculate that asym-

metric rates of sequence evolution across the phylogeny due to

unaccounted-for factors (e.g., a hidden unexamined trait or time-

dependent shifts in the substitution pattern) could also affect the

phylogeny in a way that would lead to erroneous inferences of

patterns concerning lineage diversification. In the current study,

we examine the impact of such variations in the nucleotide sub-

stitution rate on the performance of methods that aim to detect

shifts in the diversification process. To this end, we simulate phy-

logenies that are neutral with respect to diversification rates (i.e.,

identical speciation and extinction rates across all lineages of a

phylogeny) but that exhibit asymmetry with respect to the sub-

stitution rate—either when the asymmetry is associated with an

evolving trait or is elevated in a certain subclade of the phylogeny.

We then demonstrate that erroneous detection of shifts in diver-

sification patterns by both trait-dependent and trait-independent

methods occurs at a higher frequency as the extent of asymmetry

in the substitution rate increases.

Methods
SIMULATION PROCEDURES

Our general simulation procedure is to generate trees with het-

erogeneity in the rate of sequence evolution, and to test if these
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Figure 1. The general simulation outline (exemplified for Simulation Set 1). (A) A simulated ultrametric tree with tip states. (B) The

ultrametric tree with themapped character history; black and red colors represent duration of time spent under state 0 and 1, respectively.

(C) The mapped trees are scaled to reflect the effect of the trait on rates of sequence evolution. Here, any red segment of the tree is

multiplied by a factor of r = 2. (D) A multiple sequence alignment is generated based on the scaled tree. (E) The tree inferred from the

multiple sequence alignment. (F) The inferred tree and the tip states are given as input to BiSSE for parameter estimation and hypothesis

testing.

yield mistaken inferences regarding shifts in speciation and/or

extinction rates. Our simulation procedures consisted of the fol-

lowing six steps (Fig. 1). (1) Generating ultrametric trees. These

trees were generated using time homogenous birth-death mod-

els (e.g., using traits that are neutral with respect to their ef-

fect on lineage diversification). (2) Simulating a process that af-

fects patterns of sequence evolution (e.g., a trait with two states,

where state “1” evolves twice as fast as state “0”). (3) Modify-

ing the ultrametric trees according to the simulated process of

sequence evolution (e.g., by lengthening segments of the tree

evolving under state 1). The branch lengths in the resulting trees

are proportional to the expected number of sequence substitu-

tions, and are referred to hereafter as the “scaled trees.” (4) Sim-

ulating sequence data along the scaled trees, thereby generat-

ing multiple sequence alignments. (5) Reconstructing ultrametric

(time calibrated) phylogenies given the simulated sequence data.

(6) Inferring shifts in the diversification process (using either

trait-dependent or trait-independent methods) given the recon-

structed phylogenies. Under this simulation scheme, any infer-

ence regarding alteration in the speciation or extinction processes

is not a correct macroevolutionary conclusion, but an artifact of

the asymmetry in sequence evolutionary rates. Below, we detail

how we used this general scheme to simulate several different

scenarios.

GENERATION OF SIMULATED TREES

Simulation Set 1: Sequence evolutionary rates affected
by a known trait (trait-dependent methods)
This simulation set examined whether a focal trait that affects rate

of sequence evolution could be mistakenly associated with differ-

ences in speciation or extinction rate by trait-dependent diversi-

fication methods, such as BiSSE and HiSSE. Specifically, four

sets of 100 ultrametric trees were generated, such that each set

contained a fixed number of taxa: 50, 100, 200, and 400. All trees

were generated under a symmetric BiSSE model, as implemented

in the R package diversitree, with the following rates: 0 = λ1 =
0.3, μ0 = μ1 = 0.01, and q01 = q10 = 0.1. The root state was set

to be “0,” such that “0” is the ancestral state and “1” is the de-

rived state. The trees were rescaled to a fixed depth (defined as

the distance from the root to tips) of 1. The duration of time each

segment of the tree was simulated with character state 0 or 1 was

obtained using the function history.from.sim.discrete in diver-

sitree. Then, the branch lengths of each ultrametric tree T were

scaled according to the character history and the r parameter,

representing the sequence substitution rate while the character

state is 1 relative to state 0. Four different values of r were ex-

amined: 1 (namely, the rate of substitution under state 1 is equal

to that of state 0), 2, 4, and 8. This set of values represents dif-

ferent degrees of rate heterogeneities, from low rate to very high
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rate variation, thus capturing a range of rate heterogeneity ob-

served in nature. Each branch bi in T was scaled according to

b
′
i = bi(p1 × r + p0 × 1), where b

′
i is the new rescaled branch,

and p1 and p0 are the proportions of time spent in state 1 and

state 0 along that branch, respectively. To keep all trees at the

same scale, each tree was then rescaled, such that its total sum

of branch lengths was equal before and after the scaling proce-

dure. These tree manipulations on ultrametric trees resulted in

nonultrametric trees (termed hereafter “scaled trees”), such that

the branch lengths represent the expected number of nucleotide

substitutions. Finally, an outgroup species was added to each

tree, with depth of 1.2d ′, where d ′ is the maximal depth of the

rescaled tree. The branch length from the new root to the descen-

dant internal node (which was previously the root) was set to be

0.2d ′.

Simulation Set 2: Sequence evolutionary rates affected
by a hidden trait (trait dependent)
This simulation set examined whether asymmetries in the sub-

stitution rate of a hidden, unexamined, trait could cause the fo-

cal trait to be erroneously inferred as affecting diversification

rates. The procedures for this simulation scenario were identi-

cal to those detailed for Simulation Set 1, but here the history

of the trait that was used to generate the tree (and to produce

the trait data that is used in the follow-up diversification analy-

sis) was ignored. Instead, a second (hidden) trait that is neutral

with respect to the diversification process, but affects the rate of

sequence evolution, was simulated along the generated ultramet-

ric trees and the history of this trait was used to scale the trees.

This trait was simulated using the MK2 model (Lewis 2001) and

q = 0.1, constraining the transition rates to be equal in both di-

rections (from state 0 to state 1, and from state 1 to state 0).

A representative history of the hidden trait was obtained using

the make.simmap() function in the phytools R package (Revell

2012). This history was used to scale the tree according to the

parameter r � {1,2,4,8}.

Simulation Set 3: A single shift in sequence
evolutionary rates (trait independent)
This simulation set aimed to test whether asymmetric rates of se-

quence evolution in a certain subtree of the phylogeny could lead

to mistaken inference of shifts in diversification rates by trait-

independent methods such as MEDUSA and BAMM. We fol-

lowed the same procedure as in Simulation Set 1, but here, the r

parameter represented the ratio between the substitution rate in a

descendant subtree following a rate shift and the ancestral substi-

tution rate. The location of the shift was set at a node that was the

ancestor of 40% of the taxa in the phylogeny. If such a node did

not exist, we chose the node that was the ancestor of the nearest

number of taxa, and in any case did not exceed 45% of the total

number of taxa. Once the shifted node was identified, the lengths

of all branches descending from this node were multiplied by r �

{1,2,4,8}, and the procedures for generating the scaled tree were

repeated as detailed above.

Simulation Set 4: Sequence evolutionary rates affected
by a hidden trait (trait independent)
Unlike Simulation Set 3, which examined the scenario of a sin-

gle transition in sequence evolutionary rates, in this simulation

set we tested whether asymmetries in the substitution rate of a

hidden, unexamined, trait, which could cause multiple transitions

in sequence evolutionary rates, could lead to erroneous identifi-

cation of shifts in diversification rates by trait-independent meth-

ods. Hence, we followed the same procedure as in Simulation Set

1, so that the trees were simulated simultaneously with a trait,

and were rescaled according to r based on the character history.

However, the trait data were ignored when shifts in diversifica-

tion were inferred by the trait-independent methods MEDUSA

and BAMM.

Simulation Set 5: Known trait affecting both speciation
and substitution rates (trait dependent)
This simulation set examined potential biases in trait-dependent

diversification methods when a focal trait affects both rates of

sequence evolution and rates of speciation. Thus, this simulation

set does not examine erroneous rejection of the null hypothesis,

but rather statistical power. The general procedure was similar to

Simulation Set 1, except that the speciation rate was not symmet-

rical under the two states. In Simulation Set 5a, we examined the

scenario where the state with the higher rate of sequence evolu-

tion (state 1) also had a higher speciation rate (λ0 = 0.1, λ1 =
0.3), whereas in Simulation Set 5b, the state with the lower rate

of sequence evolution speciated more rapidly (λ0 = 0.3, λ1 =
0.1). All other parameters remained unchanged. In both cases,

the substitution rate of state 1 was higher than that of state 0 ac-

cording to r � {1,2,4,8}.

MULTIPLE SEQUENCE ALIGNMENT SIMULATIONS

The scaled trees were used to simulate multiple sequence align-

ments using INDELible (Fletcher and Yang 2009). The multi-

ple sequence alignments were simulated under HKY+Gamma

model with four rate categories and gamma shape parameter α =
0.5. The base frequencies parameters were set to be the following:

f(A) = 0.202, f(C) = 0.202, f(G) = 0.298, and f(T) = 0.298 (rep-

resenting average nucleotide frequencies in mammals; Swindell

et al. 2012). The transition versus transversion ratio, κ, was set

to 2, and root sequence length was set to 500. Indels (insertion

and deletion events) were drawn from a Zipfian distribution with

maximum indel length (M) of 25 and the Zipfian parameter (a)

set to 1.8. The indel rate parameter was set to 0.001 for 50 taxa
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trees, and 0.0005 otherwise, such that the alignment length is at

most twice as the root length. To consider the potential effect

of sequence length on diversification analyses, we repeated the

simulation procedure of Simulation Set 1 and 4 with the root se-

quence length set to 250 and 2000.

PHYLOGENY RECONSTRUCTION

The multiple sequence alignments created by Indelible were used

to infer maximum likelihood (ML) and Bayesian trees. ML trees

were reconstructed with PhyML (Guindon et al. 2010) using the

GTR+I+G model (with four categories of the Gamma distribu-

tion). The outgroup species that was included in the simulation

was used to root the tree and was then removed. Bayesian trees

were inferred with MrBayes (Huelsenbeck and Ronquist 2001;

Ronquist et al. 2012) using the strict clock model, as well as the

autocorrelated and uncorrelated relaxed clock models. For each

clock model, the trees were inferred using the GTR+I+G nu-

cleotide substitution model with four rate categories for the dis-

crete gamma distribution. Due to the intensive computing time,

only the uncorrelated relaxed clock model was applied in Simu-

lation Sets 2 and 5. The IGR relaxed clock model (Lepage et al.

2007) was used to account for clock variation across lineages

in the relaxed uncorrelated model, and the TK02 autocorrelated

model was used for the relaxed autocorrelated model (Thorne

and Kishino 2002). The prior on the clock rate was set to have a

lognormal distribution. Additionally, two fixed calibration points

were set: the divergence time between the outgroup and all other

taxa was set to 1.2, whereas the most recent common ancestor of

all ingroup taxa was calibrated to 1. All ingroup taxa were con-

strained to form a monophyletic group. The Markov Chain Monte

Carlo (MCMC) analysis was run for 2,500,000 generations with a

sampling frequency of 5000. The burn-in fraction was set to 0.25,

and the tree with the maximum log likelihood values was chosen

as a point estimate for downstream analyses. We note that the

Bayesian inferred trees are ultrametric, whereas the ML inferred

trees are not, and thus require a time calibration procedure before

being given as input to downstream diversification analyses.

The ML-inferred trees were time calibrated by two methods:

PATHd8 (Britton et al. 2007) and penalized likelihood (Sander-

son 2002). For the execution of PATHd8, we specified the se-

quence length as 500 and the root as a calibration point fixed to

age 1. Penalized likelihood (PL) inferences were obtained using

r8s version 1.81 (Sanderson 2003) with the Truncated Newton

optimization. We fixed the age of the root to 1, the ftol parame-

ter to 10−9, the minRateFactor parameter to 0.005, and the min-

DurFactor parameter to 10−8. r8s was executed twice: once to

identify the optimal smoothing parameter over a range of possi-

ble values (from 0.0001 to 10,000 increasing in log scale of 10)

using a cross validation procedure, and again with the optimal

smoothing parameter that was chosen as the one with the mini-

mal chi-square error. In both runs, the number of sites was set to

the alignment length, with the artificially added outgroup species

excluded from the sequence data.

TRAIT-DEPENDENT DIVERSIFICATION INFERENCE

Two BiSSE models were fitted to the time-calibrated trees us-

ing the original simulated tip states as the input trait data. As

a null model, we used a four parameter BiSSE model, where

the extinction and speciation rates under both states of the

trait were constrained to be equal, whereas the transition rates

were free to vary (λ1 = λ0, μ1 = μ0, q10, q01). The alternative

model contained six free parameters, where speciation, extinc-

tion, and transition rates were free to vary for each trait state

(λ1,λ0, μ1,μ0, q10, q01). Model selection was performed ac-

cording to the AIC, such that the null hypothesis was rejected

if the difference in AIC scores between the alternative and null

models was at least 2. Results obtained using the likelihood ratio

test and an α value of 0.05 were highly similar.

We also examined the impact of models that consider the

possibility that hidden traits may affect diversification patterns.

To this end, the CID-2 and HiSSE models (Beaulieu and O’Meara

2016) were fitted to each simulated dataset using the R package

“hisse.” In this case, four candidate models were considered: two

neutral models and two state-dependent diversification models.

The four-parameter BiSSE model (λ1 = λ0, μ1 = μ0, q10, q01)

and the CID-2 model (a CID model for character-independent

diversification with a binary hidden trait) with three transition

rates (equal transition rates between the two hidden traits and two

asymmetrical transitions rates between the observed states) were

considered as null models, whereas the six-parameter BiSSE

model and the full HiSSE model (where the hidden states are

allowed to alter diversification rates within each observed state)

were regarded as alternative state-dependent diversification mod-

els. Model selection was performed according to the AIC cri-

terion, such that the null hypothesis of no association between

the trait and diversification rate was rejected if the difference

in AIC scores between the best alternative model and best null

model was at least 2 (i.e., �AIC > 2 in support of the alternative

models).

TRAIT-INDEPENDENT DIVERSIFICATION INFERENCE

For Simulation Sets 3 and 4, we used MEDUSA and BAMM

to detect shifts in diversification rates across the phylogeny.

MEDUSA analysis was performed using the MEDUSA package

in R. As parameters for the MEDUSA function, we used the

birth-death model, and allowed for unresolved trees, because

there could be time-calibrated trees with zero branch lengths. The

calibrated trees were given to MEDUSA as input, and if the best

model inferred by MEDUSA contained one or more rate shifts, it

was regarded as a false inference of shifts in diversification rates.
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For BAMM analyses, we specified an MCMC run of

10,000,000 generations with sampling frequency of 5000. Model

selection was performed according to the Bayes Factor (BF), such

that the null model of zero shifts was rejected when the BF of a

more complex model relative to the null model was greater than

1.0 (Mitchell and Rabosky 2017). Two different priors, with the

expected number of shifts set to 1 or to 10, were initially ex-

amined. The selected models in both cases were nearly identical

(99 out of 100 runs), as was previously reported (Mitchell and

Rabosky 2017). Similarly, the estimates of speciation and extinc-

tion rates were highly correlated using the two different priors

(r2 = 0.97 and 0.92, respectively). We chose to use the broader

prior of 10 expected shifts because the chain converged faster

(reached effective sample size >200) in nearly all runs. How-

ever, in few cases (four trees out of 11,200 in Simulation Set 3,

and nine trees out of 11,200 in Simulation Set 4) BAMM anal-

ysis with the broader prior did not complete within a reasonable

amount of time (i.e., more than two weeks), and the narrower

prior was used instead. Because trees with zero-branch lengths

cannot be analyzed in BAMM, such branches were assigned to

length 10–8. Following this adjustment, the distances from the

root to all tips were maintained equal by extending the lengths of

terminal branches to match that of the tip with longest distance.

As a control to this procedure, we applied MEDUSA on this set

of adjusted phylogenies, before and after the modifications, and

results were identical in all cases.

Results
KNOWN TRAIT AND MODEL COMPARISON

(SIMULATION SET 1)

We used Simulation Set 1 to assess the impact of asymmetric

rates of sequence evolution on the tendency of the BiSSE like-

lihood framework to incorrectly select models that include dis-

tinct speciation and extinction rates for each character state. To

this end, we counted the number of simulations for which the

alternative hypothesis (in which speciation and extinction rates

depend on the state of the binary state) fitted significantly better

than the null model, in which the speciation and extinction rates

are constrained to be equal for the two states. First, we examined

the results when r = 1 (i.e., the simulated trait does not affect

the rate of sequence evolution) in five different types of phylo-

genies that were given as input to BiSSE: ML trees that were

inferred with PhyML and then time calibrated using either one

of the widely used methods PL and PATHd8 (hereafter referred

to as ML-PL and ML-PATHd8, respectively); and the Bayesian

trees inferred by MrBayes using the autocorrelated, uncorrelated,

and strict clock models (hereafter referred to as Bayes-TK02,

Bayes-IGR, and Bayes-strict, respectively). As a reference, we

also examined the error rate when the time calibration step was

performed directly on the true simulated trees (i.e., the trees that

were used to simulate the sequence data). The proportion of simu-

lations with incorrect inference of state-dependent diversification

that was obtained with the Bayesian inferred trees as well as with

two ML-ultrametrization methods was around the expected value

of 0.05 (between 0.01 and 0.06), and similar to those obtained

using the true trees (Table S1).

Next, we examined the error rate while increasing the ef-

fect of the character trait on the nucleotide substitution rate (i.e.,

higher values of the r parameter). Notably, the proportion of

simulations in which the selected model incorrectly included

trait-dependent diversification rates markedly increased with the

simulated r parameter and when more taxa were simulated

(Fig. 2). This pattern was especially evident for the ML-PATHd8

and the Bayesian trees inferred using the strict clock model and

the IGR uncorrelated relaxed clock model, for which the error

rate reached nearly 100% when 400 taxa were simulated. The

high error rate for the strict-clock model was anticipated, because

the assumption of molecular clock is violated in our simulation

procedures with r > 1. For the Bayesian autocorrelated-TK02

trees, although the error rate generally increased with higher val-

ues of r, it was lower compared to the other time-calibration

methods. In accordance with these results, the log likelihood

difference between the null and alternative models steadily in-

creased with higher values of the simulated r parameter (Fig. S1).

We further examined whether the spurious inferences of

trait-dependent diversification are affected by the inclusion of

models that account for the possibility that hidden traits influence

diversification patterns. To this end, the CID-2 and full-HiSSE

models (Beaulieu and O’Meara 2016) were considered as addi-

tional null and alternative models, respectively. Our results re-

vealed that also in this case the error rate increased with higher

values of r and with larger number of taxa, reaching high levels

and, with some minor variations, similar to that obtained using

BiSSE-only models (Fig. 2). These results were in accordance

with the relative support obtained for each of the four models,

as computed using Akaike weights (Fig. S2). In small trees and

low values of r, the support of the full HiSSE model was lower

compared to that obtained by CID-2 (although both were lower

compared to their respective BiSSE models), such that the er-

ror rate was moderate. In most tree types, the average Akaike

weight of full-HiSSE model increased with larger trees and with

the value of the simulated r parameter, reaching nearly maximal

support (and very high error rate) in trees with 200 or 400 taxa

and r ≥ 4. For the Bayes-IGR trees, however, the support for the

full-HiSSE and CID-2 models was very small compared to the

two BiSSE models, in accordance with the observed error rate

that did not differ substantially upon inclusion of the HiSSE and

CID-2 models.
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Figure 2. False inference of trait-dependent diversification of BiSSE and HiSSE models when the focal trait of diversification analysis is

associated with altered rates of sequence evolution (Simulation Set 1). Proportion of simulations where the neutral trait was erroneously

associated with altered rates of diversification as a function of the substitution rate ratio (r) in simulations that include (A) 50, (B) 100,

(C) 200, and (D) 400 taxa. The solid lines represent the results obtained for the two BiSSE models (null and alternative with four and six

parameters, respectively), whereas the dashed lines when additionally including the HiSSE and CID-2 models. Results are presented for

input trees inferred using: ML-PL (blue), ML-PATHd8 (red), Bayes-IGR (green), Bayes-TK02 (pink), and Bayes-strict (purple). In all cases, the

null model was rejected using a �AIC threshold of 2.

DISTINGUISHING BETWEEN ERRORS IN PHYLOGENY

RECONSTRUCTION AND TIME-CALIBRATION ON

FALSE POSITIVE INFERENCE OF DIVERSIFICATION

SHIFTS (SIMULATION SET 1)

The high rates of the false inference of trait-dependent diversi-

fication reported in the analyses above were based on trees that

were inferred from simulated sequence data. We next examined

whether these results are driven by errors in tree reconstruction

(altered tree topology or branch lengths) or by errors in the

time-calibration procedure. To differentiate between these two

possibilities, the time-calibration step was performed directly

on the simulated trees, which were scaled according to the r

parameter and then used to simulate the sequence data rather

than on the ML-inferred trees. We refer to these trees as scaled-

PL and scaled-PATHd8, corresponding to the two different

calibration methods used. We observed very similar error rates

when using the scaled trees compared to the ML inferred trees,

both when comparing the null and alternative BiSSE models or

when additionally including the CID-2 and full-HiSSE models

in an expanded set of four models (Fig. S3). These results thus

indicate that the main cause for the elevated error rate when

inferring trait-dependent shifts in diversification rates is due to

errors in the time-calibration procedure, rather than errors in the

inference of the topology or in the estimation of branch lengths

when these are inferred in units that are proportional to genetic

distances.
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Figure 3. Bias in parameter estimation of BiSSE as a function of asymmetry in sequence evolution rate (Simulation Set 1). Box plots

of the inferred (A) λ0 − λ1, (B) μ0 − μ1, and (C) d0 − d1 as a function of the simulated substitution rate ratio (r) parameter. Within each

panel, results obtained using trees of 50, 100, 200, and 400 taxa are ordered from left to right, represented by orange, pink, purple, and

blue, respectively. The triangle within each box denotes the average of 100 replicates. The horizontal line represents the true value. The

results shown here correspond to those obtained using the ML-PL trees (see Figure S4 for results obtained using other methods).

KNOWN TRAIT AND DIVERSIFICATION RATES

ESTIMATES (SIMULATION SET 1)

To asses which parameters are most affected by asymmetry in

sequence evolutionary rates and whether there is a systematic

bias, we evaluated the difference between the inferred speciation,

extinction, and net diversification (speciation minus extinction)

rates of the two binary states. Specifically, we tested the values

of λ0 − λ1; μ0 − μ1; and d0 − d1, where d0 and d1 denote the

net diversification rate under state 0 and state 1, respectively. For

r = 1, the estimated λ0 and λ1 were very similar, such that the

average (λ0 − λ1) was close to 0, indicating no bias. For larger

values of r, however, the difference between λ0 and λ1 became

more substantial, where, on average, λ0 was inferred to be larger

than λ1, indicating a bias of lower inferred speciation rate for

the character state with higher rate of sequence evolution. This

trend became more noticeable as the number of taxa increased

(Fig. 3A). Inferences of the extinction rates showed very similar

patterns, where the average estimates of (μ0–μ1) were close to

zero for r = 1 and became larger with higher values of the sim-

ulated r parameter (Fig. 3B), again indicating a consistent bias

for lower inferred extinction rate for the character state with the

higher rate of sequence evolution. The abovementioned biases in

the inferences of trait-dependent speciation and extinction rates

seem to counterbalance each other when net diversification rates

are concerned, as the average inference of (d0 − d1) was around

zero for nearly all taxa sets and simulated r values (Fig. 3C). The

results reported above were based on the ML-PL tree reconstruc-

tion strategy, which were similar to those obtained using ML-

PATHd8 and Bayes-strict trees, although the biases in the latter

two were generally larger (Figs. S4A and S4B, respectively). The

results obtained using the Bayes-IGR trees also showed elevated

values of (λ0 − λ1) with increasing values of r, but there was

no clear pattern in the estimations of (μ0 − μ1), so the bias in

the inferred net diversification rates increased with higher values

of r (Fig. S4C). In the Bayes-TK02 trees, the estimated differ-

ence in speciation, extinction, and net diversification rates did not

demonstrate any particular trend for most values of r (Fig. S4D).

HIDDEN TRAIT, MODEL COMPARISONS, AND

DIVERSIFICATION RATE ESTIMATES (SIMULATION

SET 2)

We next examined whether the existence of a hidden trait (i.e.,

a trait that is not the focus of the diversification analysis) that is

associated with altered rates of sequence evolution also lead to

erroneous inference regarding the diversification patterns of a fo-

cal trait (Simulation Set 2). Our results revealed that as the bias

in the sequence evolutionary rates of the hidden trait increased,

so did the error rate of BiSSE. As in the previous simulation set,

this pattern was apparent under all tree reconstruction strategies

(ML-PL, ML-PATHd8, and Bayes-IGR) and was more notice-

able when larger trees were simulated (Fig. 4). Yet, the proportion

of false positive inferences was substantially lower compared to

Simulation Set 1 where the focal trait itself was associated with

altered rates of sequence evolution (compare Fig. 4 to Fig. 2).

The results were qualitatively similar when models that account

for a hidden trait (CID-2 and full-HiSSE models) were included

in the set of examined models. For the smaller set of trees (with

50 and 100 taxa), the inclusion of these two models resulted in

a shallow reduction in the spurious inference of trait-dependent

diversification. However, in the case of trees with 200 and 400

taxa, the error rate was similar, and in some cases became even

higher for the expanded set of models compared to using the two

BiSSE models only. In all examined cases, the error rates were

very similar whether the input trees were time calibrated given
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Figure 4. The rate of false inference of trait-dependent diversification of BiSSE and HiSSE models when a hidden trait is associated with

altered rates of sequence evolution (Simulation Set 2). Proportion of simulations in which the null model was rejected as a function of

the substitution rate ratio (r) in (A) 50, (B) 100, (C) 200, and (D) 400 taxa sets. Solid lines represent the results obtained for the two BiSSE

models (null and alternative with four and six parameters, respectively), and the dashed lines additionally include the HiSSE and CID-2

models. Results are presented for input trees inferred using: ML-PL (blue), ML-PATHd8 (red), and Bayes-IGR (green). In all cases, the null

model was rejected using a �AIC threshold of 2.

the simulated (scaled) trees, or those reconstructed based on sim-

ulated sequence data (Fig. S5), indicating again that the major

source of the error is in the time-calibration procedure. Examina-

tion of parameter estimates revealed no bias toward a particular

character state. This is expected because the hidden trait that af-

fects rates of sequence evolution is disconnected from the focal

trait (see Fig. S6 for ML-PL trees).

THE INFERENCE OF SHIFTS IN DIVERSIFICATION

RATES WITH NO TRAIT DATA (SIMULATION SET 3

AND 4)

The performance of trait-independent diversification analyses,

represented by the popular methods MEDUSA and BAMM, was

first evaluated when shifts in the substitution rate occur indepen-

dently of a trait (Simulation Set 3). To this end, we evaluated a

simple scenario in which a single subtree of a phylogeny exhibits

a shift in the nucleotide substitution rate, which is r times higher

compared to the rest of the phylogeny. In the case of r = 1 (i.e.,

representing no shift in the substitution rate in any clade), the

proportion of simulations with falsely inferred shifts in diversifi-

cation rates obtained using MEDUSA was around the expected

value of 0.05 and was always below 0.05 in the case of BAMM.

For both methods, the error rate increased with the simulated r

parameter and with the number of taxa (Fig. 5), reaching high

values (0.3-1.0) when large trees were simulated. Additionally,

across all simulation scenarios the error rate of BAMM was lower

than that of MEDUSA.

To evaluate which reconstruction steps (tree inference or

time calibration) underlie the high rate of false inference of shifts

in diversification rates, we also evaluated the performance of

MEDUSA and BAMM when the scaled trees were time cali-

brated using PL and PATHd8 methods (termed “scaled-PL” and
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Figure 5. False inference of shifts in diversification rates using MEDUSA and BAMM when a shift in sequence evolution occurs in a

certain subclade of a phylogeny (Simulation Set 3). Proportion of simulations where the diversification analysis erroneously inferred

shifts in diversification rates as a function of the substitution rate ratio (r) in (A) 50, (B) 100, (C) 200, and (D) 400 taxa sets, using different

time-calibration methods. The solid lines represent the results obtained using MEDUSA, whereas the dashed lines represent the results

obtained by BAMM. The different colors represent different time-calibration methods: ML-PL (blue), ML-PATHd8 (red), Bayes-IGR (green),

Bayes-TK02 (pink), and Bayes-strict (purple).

“scaled-PATHd8,” respectively) and given as input, rather than

the trees that were reconstructed from the simulated sequence

data. A similar trend of higher incorrect identification of shifts in

diversification with more data and with higher values of the sim-

ulated r parameter was obtained (Figs. S7 and S8). However, the

error rate of the scaled trees was substantially lower compared to

the reconstructed trees when time calibration was performed us-

ing PL, whereas for PATHd8 it was similar across the two sets of

trees.

We next evaluated the performance of MEDUSA and

BAMM on datasets in which a shift in the rate of sequence evo-

lution is associated with a transition between organismal traits

(Simulation Set 4). Here again, the rate of falsely inferred shifts

in diversification rates increased with increasing values of r and

in larger trees (Fig. 6), although the error rate was generally lower

compared to that of Simulation Set 3, particularly for Bayes-IGR

trees whose error rate was only slightly higher than the expected

0.05.

KNOWN TRAIT AND TRUE SPECIATION RATE

DIFFERENCES (SIMULATION SETS 5a AND 5b)

All simulations described above concentrated on the effect of

shifts in the substitution rate on methods that detect shifts

in the diversification process in phylogenies that evolve un-

der a time-homogenous diversification process. In such cases,

rejection of the null hypothesis leads to an incorrect conclusion

of trait-dependent diversification. However, based on the results

obtained above, it is expected that in phylogenies that truly evolve

under a trait-dependent heterogeneous diversification pattern,

alterations in the rate of sequence evolution can either strengthen

or weaken any potential diversification signal. To test this predic-

tion, two sets of simulations were examined. In Simulation Set
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Figure 6. False inference of shifts in diversification rates using MEDUSA and BAMM when the asymmetry in sequence evolution rates

is trait dependent (Simulation Set 4). Proportion of simulations where the diversification analyses erroneously inferred shifts in diversifi-

cation rates as a function of the substitution rate ratio (r) in (A) 50, (B) 100, (C) 200, and (D) 400 taxa sets, using different time-calibration

methods. The solid lines represent the results obtained usingMEDUSA,whereas the dashed lines represent the results obtained by BAMM.

The different colors represent different time-calibration methods: ML-PL (blue), ML-PATHd8 (red), Bayes-IGR (green), Bayes-TK02 (pink),

and Bayes-strict (purple).

5a, the state with the higher speciation rate was also associated

with higher rates of sequence evolution, whereas Simulation Set

5b examined the opposite scenario (i.e., λ1 > λ0 in Simulation

Set 5a, and λ0 > λ1 in Simulation Set 5b; in both cases the sub-

stitution rate of state 1 was r times higher than that of state 0,

r � {1,2,4,8}). When no asymmetry in sequence evolution was

simulated (r = 1), the power of BiSSE to correctly reject the null

hypothesis was relatively similar for both simulation scenarios.

However, the effect of increasing r values was markedly differ-

ent for the two simulation types (Fig. 7). Namely, in Simulation

Set 5a the power of BiSSE to correctly detect the faster speci-

ation state steadily decreased with increasing r values, whereas

in Simulation Set 5b the power sharply increased. Moreover, in

Simulation Set 5a and when the bias in sequence evolution rate

was high (r = 8), not only did we observe low statistical power

to reject the null hypothesis, but in certain cases the inferred spe-

ciation rates pointed at the opposite direction than the true values

(i.e., the null model was rejected but λ0was erroneously inferred

to be larger than λ1).

THE EFFECT OF SEQUENCE LENGTH ON THE FALSE

POSITIVE RATE IN DIVERSIFICATION RATES

ANALYSES (SIMULATION SETS 1 AND 4)

We examined whether longer sequences would result in more

accurate tree inference and consequently lower tendency of in-

ferring shifts in diversification rates. We thus simulated datasets

with sequence lengths of 250, 500, and 2000 positions and exam-

ined the error rate for both trait-dependent and trait-independent

diversification rates. We also computed the branch score (Bs) tree

distance (Kuhner and Felsenstein 1994, as implemented in the

phangorn R package; Schliep 2011), between the inferred and

true trees (i.e., those that were generated based on birth-death
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Figure 7. Power of BiSSE when the faster evolving state has higher (Simulation Set 5a) or lower (Simulation Set 5b) speciation rates.

Proportion of simulations in which the null model was correctly rejected as a function of the rate substitution ratio (r) in (A) 50, (B) 100,

(C) 200, and (D) 400 taxa sets. The solid and dashed lines represent the results obtained when the state with the higher rate of sequence

evolution had a higher (Simulation Set 5a) and lower (Simulation Set 5b) speciation rate, respectively. Different colors correspond to

different tree reconstruction strategies: ML-PL (blue), ML-PATHd8 (red), and Bayes-IGR (green). In all cases, the null model was rejected

using a �AIC threshold of 2 and the inference of (λ0 − λ1) was in the correct direction (i.e., in Simulation Set 5a, datasets in which the

null model was correctly rejected but λ1was erroneously inferred to be smaller than λ0were not counted as true positive).

models in the initial step of the simulation). As might be ex-

pected, the distance between the true and inferred trees increased

for trees inferred from shorter sequences (Fig. S9). In accordance,

for both types of diversification inference methods, shorter align-

ments consistently led to higher false positive rate. We further

compared the results of the ML-PL trees to those of the scaled-

PL, where the time-calibration is applied directly on the simu-

lated trees, thus representing the case of perfectly inferred trees

from sequence data. The results demonstrated that the error rates

for trees inferred from longer sequences were closer to the error

rate observed in the scaled-PL trees, reaching almost identical re-

sults for sequence length of 2000, whose distances from the true

trees were the lowest.

Discussion
Detecting shifts in the diversification process has significant im-

plications for the study of adaptive radiation and species se-

lection, and may contribute to the efforts of conserving the

biodiversity on Earth. To this end, probabilistic trait-dependent

and trait-independent phylogenetic methods are commonly ap-

plied to study shifts in the diversification pattern. In this

study, we speculated that asymmetric rates of sequence evo-

lution lead to systematic biases in the reconstruction of time-

calibrated trees, which in turn could lead to erroneous detection

of trait-dependent or trait-independent shift in the diversification

rate.
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To assess the influence of asymmetric rates of sequence evo-

lution on diversification analyses, we simulated phylogenies that

are neutral with respect to the diversification pattern but that ex-

hibit shifts in the rate of nucleotide substitutions. Our results

demonstrate that as the heterogeneity in the rate of sequence evo-

lution along a phylogeny increases, so does the tendency of vari-

ous types of diversification analyses to reject the neutral model of

homogenous diversification pattern and to incorrectly select more

complex models that include shifts in the diversification process.

This was demonstrated in the following scenarios. First, for trait-

dependent methods, in cases where the focal trait of the diversifi-

cation analysis is associated with altered rates of sequence evolu-

tion. Second, for trait-dependent methods, whenever there exists

a trait (unexamined or hidden) that affects the rate of sequence

evolution in the examined phylogeny. Third, for trait-independent

inference methods, whenever a subclade in the examined phy-

logeny exhibits a shift in the rate of sequence evolution. Fourth,

for trait-independent inference methods, whenever there exists a

trait that affects the rate of sequence evolution in the examined

phylogeny. Obviously, the examined scenarios are a small subset

of all possible ways in which shifts in the molecular substitution

rates can be modeled. However, the fact that all examined scenar-

ios revealed major biases in the inference of shifts in the diver-

sification pattern points to a more general conclusion: robust in-

ferences of rates of lineage diversification should consider more

closely possible biases in the rate of molecular evolution within

the clade under study. This conclusion is further strengthened by

an additional set of simulations that demonstrated that the statisti-

cal power to correctly infer state-dependent diversification shifts

is reduced (or elevated) when the state with the higher specia-

tion rate is also the one with higher (or lower) rate of nucleotide

substitution.

Additionally, we demonstrated that the rate of false infer-

ences of shifts in diversification rates increases with the size of

the phylogeny (i.e., number of taxa). This result raises concern for

two main reasons. First, as the size of the phylogeny increases, so

does the phenotypic diversity exhibited within the analyzed clade,

increasing the probability for genuine differences in the molecu-

lar substitution rate. Second, the statistical power and accuracy

of BiSSE were shown to be rather low for small clades (contain-

ing less than 200 species), whereas results obtained using larger

clades are considered more trustworthy (Davis et al. 2013). The

effect of the data size observed here suggests that results obtained

using such large trees should also be treated cautiously, unless

heterogeneity in the substitution rate is ruled out.

Interestingly, our results regarding the accuracy of the in-

ferred diversification rates parameters demonstrated that, in most

cases, the state with the higher substitution rate tends to be falsely

associated with lower speciation rate, as well as with lower ex-

tinction rate (Fig. 3). Indeed, and as previously hypothesized

(Smith and Donoghue 2008; Beaulieu and O’Meara 2016), the

longer branch lengths emitted by the state with the higher rate of

substitution cause these lineages to appear older than they actu-

ally are, biasing estimates of diversification rates. However, be-

cause the inference of both speciation and extinction rates were

biased in the same direction, they tended to cancel out as far as the

inference of net diversification rates is concerned. These results

indicate that the comparison of net diversification rates provides

more robust inferences than teasing apart the individual effect of

speciation and extinction as well as a more robust alternative for

hypothesis testing. Still, under some tree reconstruction strate-

gies (e.g., the Bayesian uncorrelated IGR clock model), this pat-

tern was not observed as both the difference in speciation rates

(λ0 − λ1) and net diversification rates (d0 − d1) between the two

states tended to increase with the extent of substitution rate het-

erogeneity.

Several studies have previously demonstrated that errors

in divergence time estimation could deteriorate the inference

of diversification rates. For instance, Marin and Hedges (2018)

demonstrated that undersampling of sequence sites can lead to

artificially increased speciation rate toward the present due to

underestimation of more recent branching times. Duchêne et al.

(2017) examined the possible effect of substitution rate hetero-

geneity on the inference of diversification rates, and demon-

strated that positive association between the two processes re-

duces the statistical power to detect speedup or slowdown in di-

versification. On the other hand, Sarver et al. (2019) found that

although the accuracy of estimating the global diversification rate

decreases with increasing substitution rate heterogeneity, the re-

sulting estimates are still reasonable unless the tree and clock

models deviate substantially from the generating process. No-

tably, in these studies the examined rate variation was simulated

stochastically with no association to a biological trait, which bet-

ter fit the assumptions of the clock model used for molecular

dating. As noted by Bromham et al. (2018), however, the cur-

rently implemented relaxed clock models might not align well

with biological reality because most of them assume random fluc-

tuations in molecular evolutionary rates, although in many cases

rate heterogeneity is expected to change directionally according

to a gradual change of some biological trait. In the present study,

we simulated scenarios where rate heterogeneity was linked to

trait evolution, and our results demonstrated a significant impact

of heterogeneity in sequence evolutionary rates on diversifica-

tion rate estimates, thus suggesting that the existing methods for

molecular dating are not able to capture such kinds of rate varia-

tion.

Our results here suggest that errors in the inferred diver-

gence times impact the accuracy of diversification rate estimates.

In most simulation scenarios, the tendencies to select models

with multiple diversification regimes were similar when the time
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calibration step was performed on trees that were inferred from

the simulated sequence data using ML techniques or directly

given the simulated trees (termed here, “scaled trees”). In fact,

the latter can be viewed as the phylogenies that accurately

represent the genetic distances among the simulated taxa (and

thus the best possible ML inferred phylogeny). This suggests that

the main cause for the elevated error rate for both trait-dependent

and trait-independent diversification methods is due to errors in

the time-calibration procedure. These findings were consistent

through all the examined simulation scenarios, except for Simu-

lation Set 3, where the error rate was substantially lower for the

scaled trees compared to the ML inferred trees, indicating that

in this case inaccuracies in the reconstructed phylogeny, prior to

time calibration, also contribute to spurious inferences of altered

diversification rates. It is possible that such a scenario, where rate

variation occurs along a single branch, could be accommodated

fairly accurately by the penalized likelihood model (Sanderson

2002), because the assumption that substitution rates are corre-

lated across adjacent branches holds across nearly all branches

of the phylogeny.

To further examine whether errors in divergence time esti-

mation are the main drivers of erroneous detection of shifts in

diversification patterns, we examined the impact of sequence evo-

lutionary rate heterogeneity on the accuracy of phylogeny infer-

ence, as measured by the Bs distance (Kuhner and Felsenstein

1994). We observed that increased rate heterogeneity led to larger

errors in phylogeny reconstruction, which were reflected in in-

creasing Bs distance as a function of r. This trend was common

to all the examined time-calibration methods and all simulation

scenarios (Fig. S10). Nevertheless, there was not a consistent cor-

respondence between the elevated Bs distance and the error rate

of the diversification analyses. For example, in Simulation Sets 1

and 4, the Bs distance for the Bayes-strict trees was among the

lowest compared to the other examined methods clock but the er-

ror rate was among the highest in both trait-dependent and trait-

independent analyses. Similarly, although the Bs distance for the

Bayes-IGR trees was generally the largest, in MEDUSA/BAMM

analyses (Simulation Set 4) they demonstrated the lowest er-

ror rate of incorrectly inferred shifts in diversification rates,

whereas the same trees showed relatively high rates of error in the

trait-dependent diversification analyses (Simulation Set 1). These

complexities indicate that further examination is required to un-

cover the impact of errors in phylogeny inference, and divergence

time estimation in particular, on diversification analyses.

It is important to note that although errors in tree reconstruc-

tion may impact all phylogenetic analyses, they are particularly

important for methods that infer diversification rates. As noted

by Beaulieu and O’Meara (2016), trait-dependent diversification

methods maximize the joint probability of the observed tip states

and the observed tree, given the model. Thus, SSE models are

not only models for trait evolution, but are rather joint models for

trait evolution and the phylogeny. Consequently, even if the tip

states are consistent with a given transition model, the model still

may not fit well if the given tree violates some of the underlying

model assumptions. Under such modeling settings, the accuracy

of the given time-calibrated phylogeny is of great importance

to the performance of trait-dependent diversification analyses.

The same rational holds for trait-independent methods, such as

BAMM and MEDUSA, which tightly rely on the input tree in

their likelihood calculations. Unfortunately, accurate estimation

of dated phylogenies is a highly challenging task, fraught with

uncertainties (Graur and Martin 2004; Brown and Smith 2018),

and the assumption that the time-calibrated tree is absolutely

correct is usually violated. Therefore, considering the abundance

of evolutionary studies that focus on diversification rate estimates

and the ease by which dated phylogenies can be obtained, a big

step forward could be the development of methods that would

inform us on the reliability of these inferences.

In our simulations, we applied several methods for diver-

sification inference that are at present among the most widely

used. Recently, a new method was proposed for the inference of

trait-independent diversification shifts (Höhna et al. 2019), im-

plemented in the RevBayes environment (Hohna et al. 2016).

This method is based on a numerical integration approach using

stochastic mapping and, in contrast to MEDUSA and BAMM,

incorporates diversification rate heterogeneity of extinct lineages

into the likelihood computations. Because this method is compu-

tationally highly demanding, we were not able to apply it on our

extensive simulation testing. However, in an initial exploration of

a subset of trees consisting of 50 taxa we obtained erroneous in-

ference of diversification rate shifts in all examined cases. This

incorrect inference could stem from prior sensitivity, which was

already reported by Höhna et al. (2019). A more accurate infer-

ence would apply the stepping stone procedure to estimate the

BFs for the number of rate shifts, but this was not attempted here

due to the exceedingly long running times.

The results of this study enforce the challenge in studying

the linkage between rates of genome evolution and lineage diver-

sification. For example, it has been hypothesized that bursts of ge-

nomic change (“punctuated evolution”) are correlated temporar-

ily with speciation events, with elevated rates of genomic change

either driving speciation or concomitant with other changes that

occur during the speciation process. For example, cladogenesis

may increase sequence evolutionary rates due to increased rate

of adaptive evolution in genomic regions associated with local

adaptation (Losos et al. 1997), or by elevating the genome wide

substitution rate due to the more rapid accumulation of slightly

deleterious mutations in small isolated populations (Ohta 1973;

Venditti and Pagel 2010). On the other hand, higher substitution

rate may lead to faster reproductive isolation (Orr and Turelli

1634 EVOLUTION AUGUST 2020



SEQUENCE EVOLUTION AFFECTS DIVERSIFICATION RATE ESTIMATES

2001), or to higher standing variation that increases local adap-

tations (Nabholz et al. 2008b; Nosil et al. 2009). Indeed, several

studies have used phylogenetic and genomic data to examine the

link between molecular evolutionary rates and the formation rate

of new species (Barraclough and Savolainen 2001; Jobson and

Albert 2002; Pagel et al. 2006; Lancaster 2010; Lanfear et al.

2010; Venditti and Pagel 2010). However, despite the variety of

studies concluding that there is a correlation between speciation

and molecular evolutionary rates, there is no evidence that this

correlation exists in all groups of species and that it is not

confounded with other factors (Pennell et al. 2014). According to

our study, however, when such correlation exists, a genuine as-

sociation between these two factors is tricky to identify because

elevation in the substitution rates could quickly lead to misiden-

tification of the trait as associated with diversification rates (as

demonstrated in Simulation Set 5a), which was also found by

Duchêne et al. (2017). As a case in point, Rolland et al. (2014)

applied the GeoSSE model (Goldberg et al. 2011) and demon-

strated that most mammalian orders exhibit higher diversification

rates in the tropics compared to temperate regions but this pattern

was not observed in other mammalian orders, such as Carnivora,

where both the speciation and extinction rates were higher in tem-

perate regions. However, elevated substitution rates of tropical

carnivorous lineages, as reported by Gillman et al. (2009, 2010),

could weaken a potential signal of high diversification of these

lineages, and thus future investigation should interpret results in

light of possible associations between these two processes.

As shown here, trait-dependent heterogeneity in the substi-

tution rates tends to bias inferred node times in such a way that

the slowly evolving state is erroneously inferred to speciate faster

and to get extinct at higher rates compared to the fast-evolving

state. However, it is plausible that this effect is not unidirectional.

Namely, when the dated phylogeny is inferred from a multiple

sequence alignment, asymmetry in diversification rates of a

trait under study may bias inferences of trait-dependent rates of

molecular evolution (e.g., interpreting the state with the higher

diversification rate as being associated with lower substitution

rate). To investigate such a possibility, we simulated trees and

sequence data under varying levels of speciation rate asymmetry

dictated by a binary trait and inferred trait-dependent rates of sub-

stitution using the traitRate program (Mayrose and Otto 2011).

Our preliminary analysis did not reveal elevated type 1 error

rates for increasing levels of speciation rate asymmetry (results

not shown) and thus we believe such an effect is not substantial.

Recently, Louca and Pennell (2019) argued that speciation

and extinction rates per se are meaningless to estimate, espe-

cially if time heterogeneity is assumed, because there are nu-

merous parameter combinations that can give rise to the same

branch lengths distribution. These authors suggested the use of

the “pulled speciation rate” and the “pulled diversification rate”

(λp and rp, respectively) as more meaningful statistics. Although

these findings raise serious concerns regarding the validity of

most currently existing methods for diversification analyses, a

promising direction would be to estimate λp and rp with relation

to an evolving trait (i.e., in an SSE setting) or in a clade-specific

manner. Our study, however, suggests that such attempts could

suffer from the same shortcomings as those revealed here. Cer-

tainly, this is an important direction for future research.

One promising direction to alleviate the artifacts of asym-

metry in molecular evolutionary rates would be to account di-

rectly for trait-specific rates of sequence evolution during phy-

logenetic inference, for example, within a general relaxed clock

model. In this case, the substitution rate of each branch should

be drawn from a distribution that depends on the state of the trait

along that branch. An expanded probabilistic model could fur-

ther account for the possible effect of the trait on diversification

rates, thus simultaneously reconstructing the phylogeny and pro-

viding estimates of diversification rates within a single likelihood

framework.

Until this is accomplished, it seems that as a prerequisite

for the analysis of diversification rate shifts, one should test for

heterogeneity in the rate of molecular substitutions along the ex-

amined phylogeny, whether associated with some trait (e.g., Lar-

tillot and Poujol 2011; Mayrose and Otto 2011) or not (e.g.,

Whelan et al. 2011). A parallel concern is related to the anal-

ysis of large phylogenies, in which the assumption of a constant

molecular clock is less likely to hold (Sanderson 2002; Welch and

Bromham 2005; Britton et al. 2007; Quental and Marshall 2010;

Tamura et al. 2012; Simpson et al. 2018). In this case, it could

be beneficial to split the phylogeny into several (nonoverlapping)

subclades, which are more likely to follow the clock hypothesis.

When several clades are examined in parallel, it is less likely that

an unaccounted-for trait would bias the inferred phylogenies in

a similar manner (which would cause trait-dependent methods to

be biased toward higher diversification rates of the same charac-

ter state). Importantly, when multiple clades are examined, it is

also important to construct the null distribution of the relative di-

versification rates expected for such a meta-analysis, because this

might deviate from a symmetrical Gaussian distribution (e.g., as

was found by Sabath et al. [2016] when examining the associ-

ation between diversification rates and the plant sexual system)

and to additionally consider the possible effect of alterations in

the rate of sequence evolution. Obviously, such an approach rep-

resents a heuristic bypass to the problem discussed throughout

this study and loses information on the relationships among the

subclades. We suggest that directly incorporating trait informa-

tion when modeling among-lineage heterogeneity in the sequence

evolutionary rate has great potential to increase the accuracy of

phylogeny reconstruction, particularly in the estimation of diver-

gence times, and should improve the performance of many analy-
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ses that rely on the reconstructed phylogeny, for which the infer-

ence of shifts in diversification rates is one prominent example.
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Supporting information 

Tables 

Table S1: The proportion of simulations where the simulated neutral trait was 

erroneously associated with shifts in diversification (r = 1; Simulation Set 1). An 

incorrect inference of state-dependent diversification was considered when the null 

BiSSE model was rejected using a 𝛥𝐴𝐼𝐶 threshold of 2. As expected, values are all 

around the expected value of 0.05. 

Number 

of taxa 

True 

trees 

ML-

PATHd8 

ML-PL Bayes- 

IGR 

Bayes-

TK02 

Bayes- 

strict 

50 0.04 0.02 0.02 0.03 0.01 0.03 

100 0.06 0.06 0.06 0.05 0.04 0.06 

200 0.02 0.02 0.04 0.02 0.03 0.03 

400 0.03 0.02 0.04 0.03 0.02 0.02 

 

  



Figures 

Figure S1: Log likelihood difference between BiSSE null and alternative models as a 

function of asymmetry in sequence evolution (Simulation Set 1). The log likelihood 

difference between the null and alternative BiSSE models when given trees that were 

inferred using different tree reconstruction strategies: (A) ML-PL (B) ML-PATHd8, (C) 

Bayes-IGR, (D) Bayes-TK02, and (E) Bayes-strict, using trees of 50, 100, 200, and 400 

taxa. The red horizontal line inside each box indicates the median. From left to right, the 

orange, pink, purple and blue colors correspond to simulations with r = 1, 2, 4, 8, 

respectively. 





Figure S2: The average Akaike weights of each of the examined BiSSE and HiSSE 

models (Simulation Set 1). Akaike weights were computed given different tree 

reconstruction strategies: (A) ML-PL (first row), (B) ML-PATHd8 (second row), (C) 

Bayes-IGR (third row), (D) Bayes-TK02 (fourth row), and (E) Bayes-strict (fifth row). 

Within each row, each panel represents results for different number of taxa (from left to 

right): 50 taxa, 100 taxa, 200 taxa, and 400 taxa. The different colors represent the 

Akaike weights obtained for the different models: BiSSE-null (orange), CID-2 (purple), 

BiSSE-SDD (pink), and full-HiSSE (blue). For each substitution rate ratio r, the left bar 

represents the Akaike weights of the candidate models when analyzing only the two 

BiSSE models (BiSSE-null and BiSSE-SDD), while the right bar represents the Akaike 

weights of the candidate models when considering additionally the CID-2 and full-HiSSE 

models. 



 

 

  



Figure S3: False inference of trait-dependent diversification of BiSSE+HiSSE in 

scaled versus inferred trees (Simulation Set 1). Proportion of simulations in which the 

trait was erroneously associated with diversification rates as a function of the substitution 

rate ratio (r) in simulations that include: (A) 50, (B) 100, (C) 200, and (D) 400 taxa. The 

solid lines represent the results obtained for the inferred trees, while the dashed lines refer 

to the results for the scaled trees. Results are presented for input trees inferred using 

different time-calibration methods: PL (blue) and PATHd8 (red). In all cases the null 

model was rejected using a 𝛥𝐴𝐼𝐶 threshold of 2. 

 

  



Figure S4: Bias in parameter estimation of BiSSE as a function of asymmetry in 

sequence evolution rate (Simulation Set 1). Box plots of the inferred diversification 

parameter estimates  (𝜆0  − 𝜆1) (first column),  (𝜇0 − 𝜇1) (second column), and  

(𝑑0 − 𝑑1) (third column), as a function of the simulated substitution rate ratio (r) 

parameter. Each row represents different tree reconstruction method: (A) ML-PATHd8, 

(B) Bayes-strict, (C) Bayes-IGR, and (D) Bayes-TK02. Within each panel, results 

obtained using trees of 50, 100, 200, and 400 taxa are ordered from left to right and are 

colored orange, pink, purple, and blue, respectively. The green triangle within each box 

plot denotes the average of 100 replicates. The horizontal brown line represents the true 

value.  



  



Figure S5: False inference of trait-dependent diversification of BiSSE+HiSSE in 

scaled versus inferred trees (hidden trait, Simulation Set 2). Proportion of simulations 

in which the neutral trait was erroneously inferred as associated with diversification rates 

as a function of the substitution rate ratio (r) in simulations with (A) 50, (B) 100, (C) 200, 

and (D) 400 taxa. The solid lines represent the results obtained for the inferred trees and 

the dashed lines for the scaled trees. Results are presented for input trees inferred using 

different time-calibration methods: PL (blue) and PATHd8 (red). In all cases the null 

model was rejected using a 𝛥𝐴𝐼𝐶 threshold of 2. 

 

 

 



Figure S6:   Bias in parameter estimation of the BiSSE model as a function of 

asymmetry in sequence evolution rate of a hidden trait (Simulation Set 2). Box plots 

of the inferred (A)  (𝜆0 -𝜆1), (B) (𝜇0 − 𝜇1), and (C) (𝑑0 − 𝑑1) as a function of the 

simulated substitution rate ratio (r) parameter. Within each panel, results obtained using 

trees of 50, 100, 200, and 400 taxa are ordered from left to right and are colored orange, 

pink, purple, and blue, respectively. The green triangle within each box plot denotes the 

average of 100 replicates. The horizontal brown line represents the true value. The results 

shown here correspond to ML-PL trees.  

   



Figure S7: False inference of shifts in diversification rates of MEDUSA in scaled 

versus inferred trees (Simulation Set 3). Proportion of simulations in which MEDUSA 

erroneously inferred shifts in diversification as a function of the substitution rate ratio (r) 

in simulations with: (A) 50, (B) 100, (C) 200, and (D) 400 taxa, using different time-

calibration methods. The solid lines represent the results obtained using trees inferred 

from simulated sequence data: ML-PL (blue) and ML-PATHd8 (red), while the dashed 

lines represent the results obtained using trees that were time calibrated based on the 

scaled trees: scaled-PL (blue) and scaled-PATHd8 (red). 

 

 

  



Figure S8: False inference of shifts in diversification rates of BAMM in scaled 

versus inferred trees (Simulation Set 3). Proportion of simulations in which BAMM 

erroneously inferred shifts in diversification rates as a function of the substitution rate 

ratio (r) in simulations with: (A) 50, (B) 100, (C) 200 and (D) 400 taxa, using different 

time-calibration methods. The solid lines represent the results obtained using trees 

inferred from simulated sequence data: ML-PL (blue) and ML-PATHd8 (red), while the 

dashed lines represent the results obtained using trees that were time calibrated based on 

the scaled trees: scaled-PL (blue) and scaled-PATHd8 (red). 

 

 



 

Figure S9: The effect of sequence length on the false positive rate of diversification 

analyses (simulation sets 1 and 4)  

(A-B) Proportion of simulations in which the null model was erroneously rejected as a 

function of r in simulations with different sequence lengths for (A) trait-dependent 

diversification using BiSSE+HiSSE and (B) trait-independent diversification using 

MEDUSA. (C) The tree distance between the reconstructed and true trees as a function of 

the substitution rate ratio (r) in simulations with different sequence lengths. Distances 

were computed using the branch score distance (Kuhner and Felsenstein 1994). 

Simulations with different sequence lengths are represented by different colors: 250 

(blue), 500 (red), and 2000 (green). The solid and dashed lines represent results obtained 

using trees inferred using ML-PL and Bayes-TK02, respectively. The dotted black line 

represents the scaled-PL trees. All simulations were conducted using trees of 200 taxa.  

 

 

  



Figure S10: Branch-score distances between the time-calibrated trees and the true 

trees. Branch score tree distance between the reconstructed and true trees as a function of 

the substitution rate ratio (r) obtained in (A) Simulation Set 1+4, (B) Simulation Set 2, 

(C) Simulation Set 3 using different time-calibration methods. The solid lines represent 

results obtained using trees inferred from simulated sequence data: ML-PL (blue), ML-

PATHd8 (red), Bayes-IGR (green), Bayes-TK02 (pink), and Bayes-strict (purple), while 

the dashed lines represent the results obtained using trees that were time calibrated based 

on the scaled trees: scaled-PL (blue) and scaled-PATHd8 (red). For each Simulation Set, 

each panel depicts results obtained using trees with different number of taxa (from left to 

right: 50, 200 and 400 taxa).  



 


