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ABSTRACT: The history of a trait within a lineage may influence its
future evolutionary trajectory, but macroevolutionary theory of this
process is not well developed. For example, consider the simplified
binary trait of living in cave versus surface habitat. The longer a spe-
cies has been cave dwelling, the more accumulated loss of vision,
pigmentation, and defense may restrict future adaptation if the spe-
cies encounters the surface environment. However, the Markov
model of discrete trait evolution that is widely adopted in phylo-
genetics does not allow the rate of cave-to-surface transition to de-
crease with longer duration as a cave dweller. Here we describe three
models of evolution that remove this memoryless constraint, using
a renewal process to generalize beyond the typical Poisson process
of discrete trait macroevolution. We then show how the two-state
renewal process can be used for inference, and we investigate the
potential of phylogenetic comparative data to reveal different influ-
ences of trait duration, or memory in trait evolution. We hope that
such approaches may open new avenues for modeling trait evolu-
tion and for broad comparative tests of hypotheses that some traits
become entrenched.

Keywords: comparative methods, trait evolution, phylogenetics, re-
newal process.

Introduction

One style of studying trait macroevolution is to investi-
gate commonalities in how a trait evolves across diverse
lineages. By abstracting away the ecological and evolution-
ary processes that act on short timescales, a single question
can be posed across hundreds of species and millions of
years. For example, one big question is whether the evolution
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of certain traits is irreversible (Bull and Charnov 1985). Exist-
ing models of transitions among categorical trait values can
test this question on phylogenetic data (Lewis 2001; Nosil
and Mooers 2005; Goldberg and Igi¢ 2008), focusing on
the emergent pattern of asymmetry in the trait evolution
direction while sweeping aside details like how it is caused
by asymmetry in selective regime shifts or in the capacity
to adapt to such shifts. Similarly, phylogenetic compara-
tive methods are available to ask many other questions
about trait macroevolution, such as whether traits change
more rapidly in some clades than others (O’Meara et al.
2006; Beaulieu et al. 2013) or whether traits tend to
change more during speciation than within single lineages
(Bokma 2008; Goldberg and Igi¢ 2012; Magnuson-Ford
and Otto 2012). Such abstracted models have been very
useful, both because they are simple enough to be inter-
preted broadly and because they can be fit statistically to
large phylogenetic data sets. But traits may also evolve in
emergent modes that are not captured by existing models.
Here we suggest that a different dynamic of trait evolution
may also be widely applicable and mathematically tractable.

Our focal question is, Does the length of time a lineage
has held a trait value affect the chance of the trait changing
in the future? At the macroevolutionary scale, we envision
this pattern as the result of two components. In the first
component, time spent in one state may lead to increased
fit to that state. One possible mechanism is an accumula-
tion of adaptive changes. For example, flowers can become
increasingly suited to long-tongued pollinators via gradual
elongation of nectar spurs and petal color changes from
purple to red to white (Whittall and Hodges 2007); or
fusions that unite loci determining sex with loci experi-
encing sexually antagonistic selection can eventually create
heteromorphic sex chromosomes in species with separate
male and female individuals (Charlesworth 2015). Another
possible mechanism is gradual degradation through disuse.
For example, vision genes are downregulated in recently
derived cave-dwelling fish populations and accumulate loss-
of-function mutations in older cave fish species (Nie-
miller et al. 2013; McGaugh et al. 2014). In the second
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component, increased commitment to one state may re-
duce the chance of changing to another state. This could oc-
cur at a developmental level. For example, the floral transition
from many parts in spirals to few parts in whorls may be
harder to reverse after the fusion of adjacent parts within
each whorl (Donoghue 1989); or it could simply take longer
to reverse the evolution of more extensive adaptations or
losses. This logic seems reasonable and has some theoretical
basis (Marshall et al. 1994), but well-supported empirical
examples are elusive. For the sex chromosome example
above, flowering plant species with heteromorphic sex chro-
mosomes appear less likely to transition back to hermaphro-
ditism than other dioecious species (Goldberg et al. 2017).
For the other examples above, the logic would be that species
with longer nectar spurs would be less able to change to
short-tongued pollinators when the pollination environ-
ment shifted to bees, or cave fishes with more extensive loss
of vision and pigmentation would be less able to establish
surface populations when washed into aboveground habi-
tats. More broadly, macroevolutionary studies frequently fo-
cus on widely recorded and ecologically important traits (e.g.,
diet, habitat, reproductive or life-history strategy) that are
underlain by an assortment of morphological, physiological,
and behavioral attributes with complex genetic bases. If these
attributes accumulate gradually and inhibit subsequent
changes in the focal trait, it may be common for the history
of a trait within a lineage to affect its propensity for evolu-
tionary change in the future. This idea has previously been
expressed in the literature—Donoghue (1989) connects it
with the burden a trait accumulates as other features become
functionally dependent on it (Riedl 1978) and the generative
entrenchment of a trait as features later in the developmental
program build on it (Schank and Wimsatt 1986).
Although it seems intuitively reasonable that a lineage’s
duration in one state could affect the chance of change to
another state, this dynamic is absent from the model that
dominates phylogenetic studies of discrete trait evolution.
In the existing model, evolutionary changes between states
occur as jumps with specified probabilities (Pagel 1994;
Lewis 2001). Variations on the theme are numerous. State
space can be structured to accommodate everything from
codons to geographic ranges to correlations between mul-
tiple traits, rates of state change can depend on time or
clade, and trait evolution can interact with the speciation-
extinction process (Felsenstein 1981; Goldman and Yang
1994; Pagel 1994; Ree et al. 2005; Maddison et al. 2007).
One core assumption remains throughout all these vari-
ants, however: the length of time that a lineage has pos-
sessed its state does not affect the probability that it will
change state. That is, these are all memoryless Markov
models. Recent non-Markovian models for lineage diversi-
fication allow the age of a lineage to influence its probabil-
ities of speciation or extinction (Stadler 2013; Hagen et al.
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2015; Alexander et al. 2016). A non-Markovian model for
sequence evolution has also been developed, showing how
epistasis reduces the chance of amino acid reversion over
time (McCandlish et al. 2016). For organismal-level trait
evolution, however, the only previous non-Markovian model
is the threshold model (Felsenstein 2005, 2012), which we
discuss in detail below.

Here we present models that incorporate the dynamic
of memory in trait macroevolution. We retain the abstract
simplicity of representing evolution as jumps between dis-
crete states, but we add the possibility that these jumps are
affected by how long a lineage has held its state. First we
derive mathematical forms for the memory dynamic from
simple assumptions about its underlying cause; then we
investigate whether phylogenetic comparative data can re-
veal the signature of memory in trait macroevolution. We
close by discussing how future work could further open
this macroevolutionary idea to empirical study.

Models
Renewal Process

For modeling the evolution of discrete-valued traits on a
phylogeny, a continuous-time Markov chain is by far the
most common approach (Felsenstein 1981; Pagel 1994;
Lewis 2001). In this model, the chance of a change in state
depends only on the rate parameters and the current value
of the state. For example, if the trait can take either state A
or B, the model is described by two parameters: q,5 is the
instantaneous rate at which a lineage in state A flips to
state B, and g, is the instantaneous rate for the reverse trait
flip. (Throughout, we will consider only binary traits, so a
“flip” is a change to the other state.) The trait flips from
state A to state B follow a Poisson process in this model,
and the waiting time until the next flip has an exponential
probability distribution with mean 1/q,; (and similarly for
flips from B to A).

Our goal is to build a model in which the instantaneous
rate of a trait flipping depends on how long the lineage has
held that state. This requires removing the memoryless
property of the Markov and Poisson processes, rendering
the waiting times no longer exponentially distributed. The
renewal process is the generalization of the Poisson process
to any distribution of waiting times, provided they are still
independent and identically distributed (Ross 2010, chap. 7).
Each trait flip constitutes a renewal, and the time until
the next flip depends on the time since the last renewal.
Our derivations will consider only the symmetric case in
which transitions from A to B have the same distribution
as from B to A. Future work could relax this assumption
by using an alternating renewal process.

The hazard function describes the instantaneous rate of
an event occurring. In our context, this is the chance of a
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Figure 1: Transitions from state A to state B may be independent of how long a lineage has held state A (i), less likely as state A has been
held for longer (ii), or perhaps more likely as state A has been held for longer (iii). Possible corresponding hazard functions are shown in the
bottom panel. These are hazard functions of the gamma distribution, which is specified by shape and rate parameters. The hazard is flat
when shape = 1 (i), decreasing when 0 < shape < 1 (ii), or increasing when shape > 1 (iii). The rate parameter is the value after a very long

duration in state A.

flip occurring at time ¢ given that the previous flip was at
time O (fig. 1). In terms of the probability density function
(PDF) of the waiting times, f(t), and its cumulative distri-
bution function (CDF), F(t), the hazard function is h(t) =
f(t)/[1 — F(t)]. For the usual Poisson process of trait flips,
the hazard function is flat; for example, h(t) = g.3. Under
the idea that extended commitment to one state inhibits
evolutionary transitions to another state, we would like a
trait evolution model with a declining hazard function, so
h(f) decreases with t. There could perhaps be other situa-
tions in which an increasing hazard function is appropriate,
and our derivations also allow for this. For example, a par-
asite may be more likely to switch hosts after enough time
has passed that it has used up resources in the host individ-
ual or the current host species has adapted to fight off the
parasite; or deleterious mutations could accumulate in an
asexual lineage to the point that sexual reproduction be-
comes sufficiently favorable. In general, we suggest that
the rate of flipping to another state is lower when the lineage
is better adapted to its current state and higher when it is less
well adapted.

A renewal process can operate with any hazard func-
tion. What is an appropriate specific form of the renewal
process for trait evolution? We next describe three models
that abstract the process of trait evolution with different
forms of memory. We derive the hazard function for each
and then compare across models.

Threshold Models

There is currently one phylogenetic model of discrete trait
evolution that inherently causes the duration in one state

to affect the chance of flipping to the other state: the thresh-
old model (Felsenstein 2005, 2012). This model tracks the
evolution of an unobserved continuous-valued quantity
called the liability. The observed discrete-valued trait takes
state A when the liability is below a certain threshold value
and state B when it is above the threshold (fig. 24). This
model represents the situation in which a trait can only
take discrete observable states, such as presence or absence,
but a large number of genetic and environmental factors
together determine the state (Wright 1934).

It is intuitive that memory is built into the evolution of
such a trait. The longer the state has remained A, the far-
ther is the liability expected to have wandered from the
threshold, making a transition to B less likely. The thresh-
old model has been used to compute correlations between
traits (Felsenstein 2005, 2012) and to infer ancestral states
(Revell 2014). Here we relate the threshold model to a re-
newal process of trait evolution to better understand its
memory properties.

The original threshold trait model describes normally
distributed liability values (Wright 1934), and a Brownian
motion process was later used for the evolution of the lia-
bility (Felsenstein 2005, 2012). The Brownian motion for-
mulation is, however, not suited to our goal of modeling
the time to the next trait flip. Suppose the trait value crosses
the threshold into state A at time 0 and first crosses the
threshold to flip back to state B at time 7. Then for any
€ > 0, we have P(7 < €) = 1. Thatis, the probability of flip-
ping back to the previous state is 1 even over a vanishingly
small amount of time. This property is a consequence of the
self-similarity property of Brownian motion: essentially, a
Brownian motion process can be transformed so that it
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Figure 2: Three models for the evolution of a trait that can take observable states A or B. A, In the threshold model, a liability value evolves
on a continuous scale, and the corresponding discrete state is determined by whether the liability is less than or greater than a threshold
value. B, In the reset model, changes accrue while a lineage holds a state, and flips to the other state always reset the value to the corre-
sponding initial substate (A, or B,). C, In the retain model, changes also accrue but in opposite directions for each state, and the substate
value is retained upon transition to the other observed state. B, C, Dashed arrows show transitions between unobserved substates (with rates
p), and solid arrows show flips to the other observed state (with rates 7,).

is still Brownian motion on a different timescale (Karatzas
and Shreve 2012, chap. 2). Thus, although the Brownian
motion formulation used by Felsenstein (2005, 2012) works
well for other applications of the threshold model, we need
an alternative formulation to compute a meaningful distri-
bution of times until the next trait flip.

Random walk model. We describe a different model for the
liability, which retains the spirit of the threshold model but
avoids the artificial pathological path properties of Brown-
ian motion. Consider a one-dimensional random walk in
which steps of size 1 to the left or the right are equally likely,
and the waiting time between steps is exponentially distrib-
uted with rate 6. For convenience, we place the threshold at
0.5: the trait thus flips from A to B when the liability steps
from 0 to 1, vice versa for the other direction, and the liabil-
ity spends no time directly on the threshold.

We are interested in the probability distribution of 7,
the amount of time it takes to flip to B if A has just been
acquired. (It is the same for flips in the reverse direction
because our random walk is symmetric, but we pick one
case for clarity.) Let f, and F, be the PDF and CDF, respec-
tively, of 7. Let N be the number of steps taken by the ran-
dom walk before hitting 1 for the first time, starting from
0; this is the number of steps between threshold crossings.
It must be an odd number: it takes one step to cross di-
rectly from 0 to 1, and a prior excursion to negative num-
bers requires an even number of steps to return to 0. Then
for positive integers i, the probability mass function of N
is given by

i—2
P(N = i) =2"(i + 1)1<i— 1), if i is odd
2

(Lalley 2016), and P(N = i) = 0 for all even values of i.
The times between steps of our random walk are expo-
nentially distributed with rate 6, so the time 7 can be

interpreted as a sum of N independent exponential ran-
dom variables each with rate 0, where N is itself a random
variable. The sum of independent identical exponential
random variables has a gamma distribution (Ross 2010,
chap. 5). Therefore, conditioned on N taking some partic-
ular value i, the distribution of time to the next flip is
7 = Y,, where Y, is a gamma random variable with shape
parameter i and rate parameter 6. Allowing for all possible
values of N, we can then write the PDF or CDF of 7 as a
mixture of PDFs or CDFs of the Y, fori = 1,2,.... The
hazard function of 7 thus becomes

f0 YL n(PWN =)

h.(x) = i Fy (x)P(N = i) @

T 1-F(x) 1-

The hazard function for the symmetric random walk
threshold model (eq. [1]) is illustrated in figure 3A. The
rate of flips to state B always decreases with time spent
in A. The steepness of that decrease is determined by the
distribution of times between steps. With larger values of
0, the time between steps is smaller, so the liability quickly
wanders farther from the threshold, and a flip to the other
state rapidly becomes less likely. When the time spent in A
is longer, the random walk is more likely to have already
wandered far from its starting point, so waiting additional
time does not significantly affect the rate of flipping to B. In
this regime, the dependence on 0 also decreases due to the
following compensatory mechanism: for fixed time, larger
values of  result in the walk being farther from the thresh-
old, requiring more steps taken at a faster rate to return,
while smaller values of 6 are associated with the walk being
closer to the threshold, requiring fewer steps to return but
taken at a slower rate.

Multistate Models

Another way to conceptualize a process that produces
memory in trait evolution is an accumulation of changes

This content downloaded from 067.133.086.018 on April 08, 2020 14:12:02 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



304 The American Naturalist

(A) Threshold model

S
o = 7 —_— 0=05
= e )=1.0
M o — 0=20
L z-
]
S e
o ()
(o}
=
A <t
2 S 7
o
(5}
§ o |
s o
S
v
£ o |

S 4 T I T I I

0 2 4 6 8 10

duration in A

(B) Reset model

"

— 7 — p=1n=15mn=131,=01
- p=Lne=15n,=05n,=01
== p=1,n0=15mn,=05n,=04

\ p=2,m0=15m,=05mn,=04
— p=1,m0=051,-0.7,1,-09
o | \ P Mo ni N2
e ——————
|/

o -

S

o

I I I I T I
0 2 4 6 8 10

duration in A

Figure 3: Hazard functions for the threshold and reset models. A, In the symmetric random walk threshold model (fig. 24), the rate of flips
to state B always decreases with time spent in state A (eq. [1]). Larger values of 6 correspond to less time between steps, so the liability more
quickly wanders away from the threshold. B, In the model where subtraits are reset upon a flip to the other state (fig. 2B), a variety of hazard
function shapes are possible (eq. [2]). The rate of flips to state B decreases with time spent in state A if it becomes increasingly hard to leave
subsequent substates (1, > 1, > 1,), or it increases if the reverse is true. At early durations in a decreasing hazard function, with all else
equal, the rate of flips is lower for smaller values of 5, or larger values of p because the process is drawn into a longer path.

in other traits (subtraits) that support the focal trait. For
example, if the focal trait is diet type, a species may be-
come increasingly more adapted to eating insects as it
acquires the behavioral, morphological, and physiologi-
cal attributes that allow it to find, catch, and digest that
type of prey. Alternatively, the subtraits could represent
accumulated losses of function in genes that are no lon-
ger under selection, such as functional eyes or pigmen-
tation once a species becomes cave dwelling. Even if it would
be possible to observe these subtraits, perhaps not all have
been identified or included in a data set focused on the main
trait of interest. We will therefore assume that only the focal
trait, with values A or B, is observed and not the values of
the subtraits (called A; and B; for i = 0,1, ...).

Structured multistate Markov models have previously
been used to describe the macroevolution of subtraits within
focal traits. For example, Zenil-Ferguson et al. (2017) con-
sidered transitions between two states, herbaceous and
woody, while simultaneously modeling changes in chromo-
some number within each state. All the modeled states are
observable in this case, because they are combinations of
growth form and chromosome number. In contrast, Beau-
lieu and O’Meara (2016) add a hidden state to a model of
binary trait evolution, so that each observed state is repre-
sented as two hidden substates between which transitions
are possible. Applying this model to plant reproductive sys-
tems, Freyman and Hohna (2019) found the hidden state to

represent a memory process: lineages evolved from A to one
hidden state of B and then to the other hidden state of B.
(The hidden states were indistinguishable phenotypically,
but they had different effects on lineage diversification.)
Tarasov (2019) describes other arrangements of multistate
Markov models for the evolution of traits with hidden or hi-
erarchical aspects.

We next describe two multistate models explicitly struc-
tured to represent memory in trait evolution (fig. 2B, 2C).
In each, we assume that as time passes, a lineage evolves
through a sequence of substates that underlie the focal trait.
In the examples mentioned above, this could represent in-
creasing adaptation to an insectivore diet or increasing loss
of function within a cave environment. Both of our multi-
state models exhibit memory when the rate of flipping to
the other focal state depends on the current substate. The
two models differ in the effect that a flip in the focal trait
has on the value of the subtrait. In the reset model (fig. 2B),
the subtrait value that accumulated in the previous focal state
is reset because it is irrelevant when that focal trait changes.
For example, progression through insectivore subtraits might
involve gradually gaining the ability to distinguish palatable
from noxious insect prey, but this subtrait may have no cost
or benefit when the predominant food changes to seeds. In
the retain model (fig. 2C), the subtrait value that accumu-
lated in the previous focal state is retained and thus has an
immediate effect when the focal trait changes. For example,
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progression through cave subtraits might involve gradually
losing functional eyes, and that reduced vision would still
be present in a lineage that just transitioned to surface habitat.
We explain each model further below, but in essence the dis-
tinction is whether increased entrenchment in one focal state
is undone immediately or gradually upon transition to the
other state. Real traits might exhibit some mix of these two
dynamics, but it is informative to consider their separate ef-
fects. For each model, we derive their hazard functions in or-
der to compare their memory properties.

Reset model. We first consider the case where a flip to the
other observed state causes the unobserved subtrait to reset
its values. Consider a small example with three subtraits
(fig. 2B; though our derivation can easily be generalized to
more subtraits). Suppose that progressive commitment to
A is represented as transitions from A, to A, to A,. From
any of these substates A,, the species may flip to the first
substate of the other observed state, B,. In our derivation
below, the logic can apply to any probability distributions
for these transitions and flips. Our formulas are written,
however, for the special case of exponentially distributed
waiting times, with rate p for the substate transitions and
rates 1), for flips from each substate,i = 0, 1, 2. (In this spe-
cial case, a different derivation is also possible, constructing
a matrix for transitions among all the A, and B,, and then
exponentiating it to obtain the CDF for flips to B.) When
19 > 1, > 1, lineages that have progressed to later sub-
states (A; for larger i) are less likely to flip to state B. Our
goal is to determine the distribution of 7, the time it takes
to flip to B after entering A. In this reset model, 7 describes
the time to enter B, after having just arrived in A,. (Our
symmetry assumptions ensure the answer is the same for
flips from B to A.)

To derive the distribution of 7, we consider all the pos-
sible paths a lineage could take from A, to B,. For three
substates, these are A, — By, A, — A, — By, and A, —
A, — A, — B,. Define the random variable Y as the sub-
state of A just before the flip to B. For the three paths
above, Y = 0, 1, or 2, respectively. In addition, define in-
dependent random variables related to the transition time
to the next substate, Z; ~ exp(p) (for i = 0, 1), and for the
next flip to the other state, Q; ~ exp(n;) (for i = 0,1,2).
Then we can rewrite 7in terms of these random variables,
conditioned on Y:

DOE(Q0|QO<ZO) ifY =0,
T~ D =(Z)|Z, < Q) + (Q]Q, < Z) ify =1,
D, = (Zo|Zo < Q)+ (£ |Z1 <Q)+Q ifY 2.

The vertical bars denote conditioning; for example, the
Y = 1 path is taken if the transition directly from A, to
B, does not occur before the transition to A, and if the

Memory in Trait Macroevolution 305

transition from A, to B, does occur before the transition
to A,. The random variables D, represent renewal times
for each of the possible paths.

The next step is to obtain the PDF and CDF of each D,
Note first that for any two exponentially distributed ran-
dom variables—for example, S, and S, with respective
rates A, and A,—the conditioned variable (S,|S, < S,) is
distributed as an exponential random variable with rate
(A, + A,); then we have

fo(x) = (o + p)e ™™,
FDO(X) =1- e*(ﬂo*p)x’

(o +0)(m +p)

fD (x) = (e*(noﬂ))x _ e*(mﬂ:)x)’
' = Mo
Fp(x) =1— ML o g TP e tn o
1 M= "o N~ No
e otox  om(mtex  pmmx
X) = + + — +
For®) = (n + p), p)nz( ot C})
(defining C, = 7, — 10,C, = 1, — 10 — o,
C=mn—mn~—p)
e "y + p)my e (g + o),
sz(x) = ]._
C‘1 CZ C1C3
e (o + p)(m + p)
C,C, '
If, however, 7, = 7, then D, is distributed as a gamma

random variable with shape 2 and rate 5, + p. And if
7, = 0, + p, then D, is distributed as a gamma random
variable with shape 2 and rate 7,.

In addition to the above expressions for the renewal
time along each possible path, we need to know how likely
it is to take each path. The conditioning probabilities are
the probabilities of each path from A, to B,, that is, the
probabilities that Y = i:

P(Y =0) = P(Q <Z) = T >
n t o P 7
P(Y =1) = P(Q>2,,Q <Z) = —,
7]03‘9"71;,0
P(Y =2)=P(Qy>Zy,Q >2Z,) = :
M T om+p

The PDF and CDF of 7 are then obtained as the dis-
tributions for each possible path weighted by the proba-
bility of taking that path,

£.(x) = P(Y = 0)fp,(x) + P(Y = 1)fp, (x)

+ P(Y = 2)fn, (%), 2a)
F,(x) = P(Y = 0)Fp,(x) + P(Y = 1)Fy,(x)

+ P(Y = 2)Fy,(x), 2b)
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from which we obtain the hazard function,

[
h.(x) = T-F0) (2¢)

Examples of the hazard function for the reset model
(eq. [2]) are illustrated in figure 3B. When no time has
passed in A, the rate of flipping to B is always h,(0) =
7, because there has not been time for the indirect paths.
When a long time has passed in A, the rate of flipping to
B is always 7, because there is no other option for a tran-
sition out of A, (in this example with only three subtraits).
For intermediate durations in A, the shape is determined
by the weighted contributions of each possible path to B.
Hazard functions are decreasing when it becomes pro-
gressively hard to exit each substate (1, > 7, > 7,) and in-
creasing when it becomes progressively easy (7, < 7, < 1,).

Retain model. We next consider the case where a species
retains the value of its subtrait when flipping to the other
observed state. In contrast to the threshold and reset con-
ceptualizations of memory in trait evolution, this retain
model cannot be described by a two-state renewal process.
Instead, a different renewal process is needed for each sub-
state. To see this, consider again the example with three
subtrait values (fig. 2C). As before, transitions to succes-
sive substates (A; — A;;,) take place after an exponential
waiting time with rate p. In contrast to the reset model, the
retain model sees A; transition to B; instead of to B, for
i = 0, 1, 2, so the lineage retains the A-adapted subtraits
even after the transition to B. Again, these flips from A;
to B, take place after an exponential amount of time with
rate ,, and n, > 7, > 1, if flips to B become increasingly
difficult with greater commitment to A. (Because subtrait
evolution while in B undoes changes accrued while in A,
we might wish to order the rates 7, differently for flips
from B to A, as indicated by the gray arrows in fig. 2C.)

In the retain model, let 7; be the time it takes to flip to B,
starting from state A;. For the starting state of A,, 7, has
the same distribution as the renewal time in the reset
model (eq. [2]). However, 7, has a different distribution.
Recall the random variable Y, which tracks the substate
at the time of the trait flip. When the initial state is A,
Y can only take values 1 or 2, so 7, can be written as

- (QiQi<2z) ify =1,
Tl @Z2,<Q) +Q, ifY =2,

with conditioning probabilities

P(Y = 1) = P(Q <Z) =1,
m+p
P(Y =2) = P(Q >2Z,) = ——.
n Tt

Then we have the PDF and CDF of 7;:

fT1 (x) = ge Mo 4 ;- _7’727'0 - (e~m*e)x — gmmx),
2 1
T _ 1Y
F, (x) = (1 — e"m*e) +
1 m+p mte

(1 _ 2 e~mox 4 mte ean).
=M — P N —Mhh — P

Last, 7, is simply an exponential random variable with rate
7,, with the corresponding constant hazard function.

Because the renewal time for flips from A to B depends
on the substate held upon arrival into A, a two-state re-
newal process will not suffice for the retain model. Rather
than a single hazard function that describes flips from A
to B, as in our other models, a different hazard function
is needed for flips coming from A, or A, or A,. For exam-
ple, in figure 4, we see that the hazard functions for arrival
in A, match those of the reset model with the same param-
eters (comparing fig. 4A with fig. 3B) but that for those
same parameters, the hazard functions for arrival in A,
and A, are different. As in the reset model, as the duration
in A increases, it becomes more likely that the flip to B will
occur from the last substate, A,, so the hazard rates all ap-
proach 7,. Also analogous to the reset model, immediately
after arriving in A, the rate of flipping to B is ..

Choice of Renewal Function

All three models considered above contain the idea that
changes in many unobserved components accumulate to
inhibit changes in the focal binary trait. Each model repre-
sents this process differently, but a consistent outcome is a
hazard function that declines steeply at first and then more
gradually so that the effect of memory on trait evolution is
strongest shortly after a trait change. These models of ab-
stract mechanisms for how memory may enter trait evolu-
tion could each be fit to phylogenetic data. Rather than
model such mechanisms, however, one could instead work
simply with a two-state renewal process and directly spec-
ify the mathematical form of the renewal function. This
approach would not capture the retain model, as explained
above. However, choosing, for example, a gamma distribu-
tion for the renewal function would roughly capture the
shape of the hazard seen under the threshold and reset
models. It also includes as a special case the Poisson model
with exponentially distributed waiting times. Examples are
shown in figure 1. We take this approach of directly spec-
ifying the renewal function in the next section, when we
turn to fitting the renewal process to data.

Inference

We now consider the question of whether memory in trait
evolution can be inferred from phylogenetic comparative
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Figure 4: Hazard functions for the retain model. For the scenario in which adaptation subtraits are retained upon a flip in the focal trait
(fig. 2C), the rate of flips to state B depends on whether the initial substate was A, (A), A, (B), or A, (C). This precludes the use of a two-state

renewal process framework.

data. First we derive the likelihood of tip character states
given the tree and a renewal model of trait evolution, and
then we present a small set of simulation results to test the
efficacy of this approach. That is, we investigate whether
commonly available phylogenetic data can reveal whether
a full renewal process fits the data better than the special
case of a Poisson process.

Likelihood

To calculate the likelihood of observed tip states on a phy-
logeny, we employ the pruning algorithm (Felsenstein
1981). Working from the tips of the tree toward the root,
this algorithm combines the probabilities of state changes
along each branch while summing over possible states at
each node. For any model using this algorithm, the key
quantity is the transition probability function. Given that
a lineage is in state s, at time ¢, the transition probability
P, (t,t + v) is the probability that the lineage is in state
s, attime t + v. We next derive this transition probability
for the renewal model.

Our derivation assumes that there are two possible
states and that transitions between them are governed

(A)
f ey

&r* - - - - IM

by the same renewal process in each direction. We fur-
ther assume that we specify directly the renewal func-
tion, with PDF f and CDF F. This function could take
any form. The likelihood derived here could apply to
the threshold or reset models, if the form of the renewal
function is chosen appropriately, but not to the retain
model, which cannot be described by a two-state renewal
process.

To begin, suppose a renewal occurs right at time
yielding state s, (fig. 5A). The probability of ending up
in state s, at v units of time later is

ZFZi(V) — Fy1(v)  whens, = s,
o (3)
ZFZHI(V) — Fyn(v) whens, # s,.

i=0

o (V)

The first case describes an even number of flips during that
time, and the second case describes an odd number of
flips. The following property of the renewal process is used
in equation (3): If a renewal occurs at time 0, let N(¢) be the
number of renewals until time . Then P(N(t) = n) =
F,(t) — F,.:(t), where F,(t) is the CDF for the sum of n

(B)

t t+7 t+v
m} e - - IM
—
T
v

Figure 5: Renewals on a single lineage, used to compute transition probabilities. The initial state is s,, and the final state is s,. Renewals are
labeled with stars, large and black for the focal event and small and gray for subsequent events that may or may not occur.
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independent copies of the renewal process (Ross 2010,
eq. [7.3]). That is, F,(¢) is the probability that n or more
renewals have occurred by time ¢, and it is the n-fold con-
volution of F with itself. (Note that this convolution is
trivial for the gamma distribution, which is another rea-
son we suggested above that it could be used as the re-
newal function.)

However, it is in general not the case that a renewal
occurs right at time ¢. Let 7 be the amount of time elapsed
from t to the next renewal; this is the residual time
(fig. 5B). The PDF of 7 is given by

[ 1) = f(t +x) + J;f(u + x)m/(t — u)du, (4)

where m(t) = E[N(¢)] is the expected value, and m/(t) =
dm/dt is the probability that there was a renewal between
times t and t + dt. In equation (4), the first term applies
when no renewal has happened at all (since time 0), and
the second term applies when there was a previous renewal
(at time t — u). This second term integrates over all times
that previous renewal could have happened, weighting each
by the probability of a renewal then.

If we assume that the trait evolution process is in the
limiting regime, we can simplify equation (4) as follows:

limf. (x,£) - I_TF(’C) = f.(%), (5)

where p is the mean of the distribution F. Under this limit,
the first term in equation (4) goes to zero because at least
one renewal would have happened by t. Also, the density
of renewal events, m'(t), goes to its mean value of 1/p, the
reciprocal of the mean time between renewals. Thus, we
have dropped the dependence on the absolute time ¢, so
that f, can be interpreted as the amount of time we wait
until the next renewal, regardless of the current time. In
the following, we will retain the assumption that we are
concerned only with the limiting regime t — oo, which
means assuming that the trait evolution process has run
for a long time before the root of the tree.

We now construct the transition probabilities. One
possibility is that the first renewal after time t occurs be-
fore or at time t + v (fig. 5B). In this case, we must also
consider subsequent renewals that may or may not occur
by t + v. Then the probability of observing state s, at time
t + v, conditioned on knowing s, at time ¢, is given by

v

P, 7<Ly) = ﬁjog‘%)sl(v —1r)f,(r)dr. (6a)

The notation s; means the state that is not s, and F, is the
CDF of 7. We have dropped the ¢ dependence from the
above equation based on the limiting approximation of
the PDF of 7 (eq. [5]).

The other possibility is that the first renewal after time
t happens after time ¢ + v. Then

P, (T>v) =6, (6b)

where the Kronecker 6 function is 1 if the states are equal
and 0 otherwise.

Putting these two possibilities (eq. [6]) together, the
probability of observing state s, at v units of time after ob-
serving s, is given by

P,.,(v) =P, (vt <v)P(r £v) + P, (v|]T > V)P(7 > ),

50,51

- J Co (v = Pf(Ddr + [1 = F0)15,..
(7)

Armed with the transition probability function for our
renewal model (eq. [7]), we can use the pruning algorithm
to compute the likelihood of the tip state data given the
tree and the model, conditional on the state at the root
(Felsenstein 1981). Because we have assumed that transi-
tions between the states are symmetric and that the trait
evolution process has been running for a long time before
the root, each root state is equally probable. The full like-
lihood is thus the sum of the conditional likelihoods with
weight one-half each. Generalizing the root state distri-
bution to other nonuniform distributions would only re-
quire changing the probability mass function of the root
state. This would occur in the scenario where transitions
between states are not symmetric, for example, or if fossil
or other information informed the root state. However, a
scenario that relaxes the assumption that trait evolution
has run under the same model for a long time prior to
the root would be more complicated because it would in-
duce loss of temporal homogeneity in the transition prob-
ability function (i.e., eq. [5] could not be used, so eq. [7]
would depend on ).

Simulation Tests

In principle, the likelihood function derived in the previ-
ous section could be used to infer the parameters of the
two-state symmetric renewal process model from phylo-
genetic data. To test how well this might work in practice,
we implemented the likelihood calculation and used it for
parameter estimation on simulated data. The limited re-
sults we report here give a rough sense of the feasibility
of identifying memory in trait evolution from phyloge-
netic data, though they are by no means a comprehensive
assessment.

For our inference model, we chose a gamma distribu-
tion for the renewal function. The central inference ques-
tion is thus whether the shape parameter of this distribution
is distinguishable from 1. If not, a Poisson model is sufficient
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to explain the data, and there is no evidence for memory
in the macroevolution of the trait (fig. 1i). If 0 < shape < 1,
memory works in the expected direction, with flips in
the trait becoming more difficult the longer a state is held
(fig. 1ii). If instead shape > 1, memory works in the oppo-
site direction, with flips in the trait becoming increasingly
likely (fig. 1iii).

In our testing procedure, we first simulated a large phy-
logeny under a simple birth-death model (500 tips, speci-
ation rate 10 times larger than extinction rate, tree scaled
to a root age of 1). Then we simulated the evolution of a
trait under the renewal process on that tree, using gamma-
distributed waiting times for flips of the binary trait.
Our simulations and inference all assume symmetric trait
evolution, with flips from A to B governed by the same dis-
tribution as flips from B to A. The mean waiting time be-
tween flips is shape/rate. Dividing the total branch length
of the tree (97 time units) by this mean waiting time pro-
vides the expected number of character state changes per
clade: it ranges from 5.5 to 1,940 (details in fig. A1; figs. A1-
A3 are available online).

We then computed the likelihood of the tip state data
on the tree using the likelihood function derived above,
again with a gamma distribution for the renewal function.
We used Bayesian inference to estimate the shape and rate
parameters of each simulation of trait evolution. We fit the
model with Markov chain Monte Carlo (MCMC) using a
slice sampler (Neal 2003). We assigned a prior on each pa-
rameter that was exponential with rate —In(1/2) = 0.693,
which gives equal weight to shape parameters less than or
greater than 1 over the age of the tree and which is also rel-
atively uninformative over reasonable values of the rate
parameter. To visualize how the data provide information
about the shape and rate parameters, we additionally com-
puted the likelihood on gridded parameter space. This also
serves as a check that maximum likelihood parameter esti-
mates are in general agreement with those from Bayesian
inference. Our C and R code for all these procedures is in-
cluded as supplemental material, available online.'

Our primary inference question is whether typical phy-
logenetic comparative data—a known tree and trait val-
ues for extant species—bear any signal of memory in the
evolution of the trait. We find that in many cases they do.
Data sets simulated with a declining hazard function—
so that trait flips become less likely with longer duration
in a state—yielded estimates of the shape parameter that
were consistently close to the true value and less than 1,
though the estimates were not always precise enough to
exclude 1 (fig. 6, top row). Data sets simulated with flat
or increasing hazard functions yielded larger shape esti-

1. Code that appears in The American Naturalist is provided as a con-
venience to readers. It has not necessarily been tested as part of peer review.
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mates, but the latter usually did not rule out a shape value
of 1 with any confidence (fig. 6, middle and bottom rows).
The hazard functions and rate parameter estimates are
shown in figures Al and A2.

Estimates were less accurate and less precise when the
true rate parameter was low (fig. 6, left columns). With a
low rate, flips are rarer overall so less of the total branch
length on the tree lies shortly after a trait flip. Because the
hazard function changes most rapidly shortly after a trait
flip, lower rates provide less potential to see the influence
of trait duration on the instantaneous rate of change. Accu-
racy also appears to be worse for shape parameters larger
than 1. Again, the distinguishing portion of time is shortly
after a flip, but this is when the rate is low (fig. 1iii) so there
are few events to inform the value of the instantaneous rate.

Visualizing the likelihood function reveals that much
uncertainty comes from parameter correlations (fig. A3).
There is a ridge in the likelihood surface such that the data
are explained almost equally well by large shape and rate
values or by small shape and rate values. One explanation
may be that the main distinguishable signal is of merely the
average time between renewals, which is governed by the
ratio between shape and rate parameters for the gamma
distribution choice of renewal times. For example, the three
hazard functions shown in figure 1 have positively corre-
lated parameters (shape and rate both low for ii, both high
for iii, both intermediate for i) and roughly the same aver-
age value over the time interval shown. Fixing the rate pa-
rameter to the true value sidesteps the correlation and
yields greatly improved estimates of the shape parameter
(consider a horizontal transect in fig. A3), but this type
of extra information may be difficult to obtain for real-
world applications.

In summary, the threshold, reset, and retain models
discussed earlier provide some general guidance on the
form the renewal function would take under various as-
sumptions of the cause of memory in trait evolution. Based
on that guidance, we chose one functional form for the re-
newal function, simulated trait evolution under it, and tested
whether those simulated phylogenetic data revealed whether
the true hazard function was flat, decreasing, or increasing.
We found that phylogenetic comparative data do bear some
signal of the shape of the hazard function, though precision
and accuracy are not especially great. Thus, for future em-
pirical studies, it may be possible to estimate the strength of
memory in trait macroevolution, but further work would be
needed, as discussed below.

Discussion

Here we have considered whether trait evolution on long
timescales might not be memoryless, such that the longer
a lineage has held a trait value, the harder it is for that value
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Figure 6: Inference results for trait evolution simulations. In each panel, results are shown for 10 data sets, each simulated on a tree with
500 tips and a root age of 1. A gamma distribution of waiting times was used to simulate trait evolution, and its shape and rate parameter
values are shown in the panel labels. The hazard function is either decreasing (shape of 0.25; top row), flat (shape of 1; middle row), or
increasing (shape of 1.75; bottom row); these true values are marked with black horizontal lines. The full hazard functions are plotted in
figure Al. The key inference question is whether the shape parameter is distinguishable from 1 (emphasized with a darker gray guideline).
Inference of the shape parameter is summarized here based on the Markov chain Monte Carlo results, showing median values (points) and
90% credibility intervals (whiskers). Corresponding estimates of the rate parameter are shown in figure A2.

to change. One pattern that can emerge from this dynamic
of trait evolution is variation in evolutionary rates, for ex-
ample, a trait being conserved in one part of the tree but
labile in another part. Such rate heterogeneity has been
identified previously using hidden state models, in which
the observed focal trait is subdivided by an unobserved
trait, and different rates of trait transitions or lineage di-
versification can apply to the different hidden states. This
effectively allows for variation in macroevolutionary rates
without explicitly defining the source of that heterogene-
ity. For example, Beaulieu et al. (2013) found that transi-
tions between herbaceous and woody growth forms in
Campanulidae occurred frequently in some parts of the
tree and rarely in others; these fast and slow domains were
identified as hidden states underlying the observed states.
In our model, if the trait has changed recently, the rate of
trait change will tend to remain high in that portion of the
tree. Similarly, if it happens that a long time has passed
since a trait change, the rate of change will tend to remain
low. We thus suggest trait evolution memory as a biolog-
ical process that can produce the rate heterogeneity ap-

proximated by hidden state models. Indeed, our reset and
retain models used hidden states to model the memory pro-
cess. Beyond that, we also showed how the renewal func-
tion can be chosen directly, allowing more flexible descrip-
tions of how duration in one state affects the chance of
changing to the other state.

Our goal was to describe a new macroevolutionary
model of memory in trait evolution that incorporates suf-
ficient complexity to open up the study of this question,
while retaining sufficient simplicity that it can represent
evolution on many different lineages and be fit to phylo-
genetic data. We compared different mathematical mod-
els that incorporate memory in trait evolution, and we
showed how a fairly general model can be fit to a phylog-
eny. We found that phylogenetic comparative data can in
principle bear the signature of trait evolution memory but
that, in practice, there may be substantial uncertainty in
the inference of this process. We end by discussing how
future work might build on our approach by extending
the mathematics employed, the data provided, and the
questions posed.
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Extending the Mathematical Framework

Enhancing the mathematical models described above would
open new possibilities for modeling memory in trait evolu-
tion. In some applications, the substates of the reset or retain
model might represent known subtraits or genetic changes.
If this knowledge provides more specific guidance on
the difficulty of moving between substates, the transitions
could be adjusted accordingly (e.g., replacing p with p;
or using a non-Poisson process). The allowed transitions
could also be altered to provide, for example, a mix of the
reset and retain dynamics.

In many applications, trait evolution is expected to
proceed differently in one direction than the other. All
of our models could be extended to accommodate this
change. For the reset and retain models, asymmetric flips
in the focal trait could be introduced by adding param-
eters (replacing n; with 74, and 7g). For the threshold
model, an asymmetric random walk could be used. For in-
ference with a directly chosen renewal function, the like-
lihood calculation could be expanded to allow an alternat-
ing renewal process.

To infer from data whether there is memory in trait
macroevolution, the key inference goal is the value of the
parameter that governs the presence of memory. In our
simulation tests, this was the shape parameter of the gamma
distribution, but we found that its estimation was con-
founded with the rate parameter. To avoid this problem
of parameter correlations, it might be possible to choose
a different renewal distribution in which only one param-
eter governs the mean. Implementing other functions for
the renewal process would also enable one to capture haz-
ard functions that represent different mechanisms of trait
evolution. Such an extension would not require a change
to the likelihood derivation, but it would require changes
to the software implementation. In particular, the choice
of gamma-distributed renewal times is convenient be-
cause its n-fold convolution, which we used in the like-
lihood calculation, follows a simple parametric form. A
compound Poisson distribution, for example, would also
possess this property. Otherwise, it may be feasible to use
more general classes of distributions if the n-fold convo-
lution is precomputed numerically and stored for likeli-
hood computations.

The threshold model is already in use, but its current
phylogenetic applications are computationally difficult be-
cause they integrate over all the possible values of the lia-
bility at each node and tip (Felsenstein 2005, 2012; Revell
2014; Hiscott et al. 2016). Our approach is different: we
work directly with the transition probabilities for the ob-
served binary trait, not with the unobserved liabilities.
Therefore, using our likelihood function with the hazard
function of the threshold model, which we also computed,
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might provide a more efficient means of fitting the thresh-
old model to phylogenetic data.

Extending the Data in Phylogenetic
Comparative Analyses

The simulation tests we reported are a first indication of
whether one could hope to infer the presence of memory
in trait macroevolution from typical phylogenetic com-
parative data. We find that there is indeed some signal
but that precision and accuracy may not be high. One tack
for improving inference of the renewal process is to con-
sider how further sources of information could be incor-
porated into an analysis.

Other studies have demonstrated that combining fossil
information with phylogenetic analyses can aid inference
of trait evolution (Finarelli and Flynn 2006; Slater et al.
2012; Hunt 2013; Slater 2013). As an initial test, we con-
sidered the case where all species on a simulated birth-
death tree are retained whether or not they survive to the
present, along with their terminal trait values. We found
that on a tree with 250 extant tips and about 250 extinct
tips, parameter estimates were about as good as on a tree
with 500 extant tips (results not shown). This preliminary
test suggests that fossil data do help by increasing the num-
ber of species with known state but that the insight of ex-
tinct tips into past states does not seem to provide a partic-
ular benefit. Besides tips representing extinct species, other
kinds of historical information can anchor trait values
along the branches of the tree. In the ideal case, knowing
the trait values along every lineage would pinpoint the
times of every trait flip and provide complete information
about the renewal process. A useful next step would be to
investigate whether a reasonable subset of this information
on ancestral trait values could greatly improve inference of
the renewal process. Even if the past trait values of a lineage
cannot be precisely dated, knowing the number of trait
changes over a window of time could also be helpful. Other
work on renewal processes with gamma interarrival times
shows that data on the number of renewals within the time
period of observation can aid parameter inference (Miller
and Bhat 1997).

Even for clades with no fossil record, other kinds of in-
formation can hint at past trait values. For example, the
relative degree of degeneration in underlying genes might
indicate that some lineages have lost, for instance, func-
tional eyes or blue flowers more recently than others (Nie-
miller et al. 2013; Wessinger and Rausher 2015). Such an
indication of how long a lineage has held its current value
of the focal trait could be incorporated by refining the bi-
nary tip state coding to the substate level in the reset or
retain models or perhaps by placing priors on transition
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times. This could potentially improve inference of the re-
newal process.

Extending Questions about Memory in Trait Evolution

Our focus has been on the mathematical form and phy-
logenetical signal of memory in trait evolution. The mod-
els presented here may, however, also be useful in other
settings.

One question in molecular evolution is whether the
rate of sequence evolution depends on the state of an eco-
logical or morphological trait (Mayrose and Otto 2011;
Levy Karin et al. 2017). A renewal model could extend
this question to whether the rate of sequence evolution in-
creases after a change in the organismal trait. For exam-
ple, if the organismal trait is the host in which a pathogen
lives, one could use this model to test the hypothesis that
particular functional sites of the pathogen are involved in
adaptation to a new host by testing whether the substitu-
tion rate at those sites is higher immediately after a host
switch. This type of model could use standard Poisson
models for the organismal-level trait and for sequence evo-
lution but additionally with the overall rate of base pair
change following a renewal process, based on the time
since the last organismal trait flip. Such an application is
likely to derive much more power from the many sites in
a sequence: each site hypothesized to show this dynamic
could evolve under the same model, all having the same
rate at a given time. Indeed, renewal models have already
been used in other aspects of molecular evolution (McCan-
dlish et al. 2016; with epistasis reducing the rate of amino
acid reversion).

The memory model of trait evolution could also be
coupled with models of lineage diversification. For exam-
ple, increasing inability to adapt to a shift in selective re-
gime could result in duration-dependent extinction. This
resembles the model of Alexander et al. (2016), but the
critical factor is time since the last trait change rather than
time since the lineage’s origination. An implementation
would involve replacing transition probabilities with dif-
ferential equations for clade and extinction probabilities
(as in Maddison et al. 2007).

An initial motivation in developing the renewal model
of trait evolution was that it might alleviate problems of
phylogenetic pseudoreplication in studying trait evolu-
tion. For testing correlations between two discrete-valued
traits or between one trait and lineage diversification rates,
existing methods draw signal from all parts of the tree that
exhibit the correlation, instead of from the number of in-
dependent times that association has arisen (Maddison
and FitzJohn 2015; Rabosky and Goldberg 2015). Perhaps
a trait evolution model in which the time since the last

change plays an important role would be less susceptible
to this problem.

Finally, we will be curious to see whether this approach
to modeling trait evolution has utility in other areas of
ecology and evolution. For example, consider a theoret-
ical investigation of when competitors can coexist on re-
sources that change with time. A renewal process could
capture the idea that the longer one participant has spe-
cialized on a single resource, the harder it is to switch to
another. The coexistence dynamics of such a model might
differ from formulations with other inhibitions to re-
source switching.

Conclusion

Our premise has been that the longer a lineage holds a
trait value, the harder may become evolution away from
that value. This is, however, only a hypothesis. Evolution
does indeed take time, but whether the memory dynamic
of trait evolution emerges at a macroevolutionary scale
depends on how elapsed time relates to extent of fit with
the environment and the degree to which increased fit to
one regime inhibits evolution in a new direction. We hope
that the present work will enable broad comparative tests
that complement system-specific investigations of these
questions.
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Symposium Editor: Maria R. Servedio

“The Mesonyx ossifragus is the largest species. . . . We can depict an animal as large as a large-sized American black bear, with a long, stout
tail and a wide head as large as that of a grizzly bear. The fore limbs are so much shorter than the hind limbs that the animal customarily sat on its
haunches when on land. In walking, its high rump and low withers would give it somewhat the figure of a huge rabbit.” From “The Creodonta”

by E. D. Cope (The American Naturalist, 1884, 18:255-267).
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Appendix from E. E. Goldberg and J. Foo,
“Memory in Trait Macroevolution”
(Am. Nat., vol. 195, no. 2, p. 300)

Supplemental Figures

Supplemental figures are provided here. Code for inference tests is provided in a separate supplemental file.
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Figure A1: Hazard functions used for simulation tests reported in figures 6 and A2. For each set of parameters, the inset text gives the

mean number of flips in the binary character on our tree. This is computed as the total branch length of the tree (97 time units) divided
by the mean waiting time between flips (shape/rate).
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Figure A2: More inference results for trait evolution simulations. For the same simulated data sets, estimates of the shape parameter are
shown in figure 6, and estimates of the rate parameter are shown here.
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Figure A3: Log-likelihood surfaces for 10 simulated data sets on trees with 500 tips. Data sets are the first four for each shape value,
with a rate value of 3, in figures 6 and A2. True parameter values are marked with red triangles. Maximum likelihood estimates are
marked with green circles. Black contour line spacing is 1 log-likelihood unit, and the log-likelihood values are normalized so that
the maximum is 0. Green contours additionally mark the 50% and 95% likelihood ratio confidence intervals, computed with the x?
approximation.
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