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The maximum per capita rate of population growth, r, is a central measure

of population biology. However, researchers can only directly calculate r
when adequate time series, life tables and similar datasets are available. We

instead view r as an evolvable, synthetic life-history trait and use comparative

phylogenetic approaches to predict r for poorly known species. Combining

molecular phylogenies, life-history trait data and stochastic macroevolution-

ary models, we predicted r for mammals of the Caniformia and Cervidae.

Cross-validation analyses demonstrated that, even with sparse life-history

data, comparative methods estimated r well and outperformed models

based on body mass. Values of r predicted via comparative methods were in

strong rank agreement with observed values and reduced mean prediction

errors by approximately 68 per cent compared with two null models. We

demonstrate the utility of our method by estimating r for 102 extant species

in these mammal groups with unknown life-history traits.

1. Introduction
The maximum per capita rate of population growth, r, also called the intrinsic rate

of increase, is a central measure of population biology. It helps to determine the

stability and dynamics of populations and to differentiate species with regard to

extinction risks, conservation needs and invasion potential [1–3]. Despite the

broad relevance of r to theoreticians and empirical biologists alike, the time

series, life tables and other datasets from which r can be calculated directly are

available for only a tiny subset of wild species [4]. As a result, researchers have

long relied upon approximations of r based on life-history traits, allometric

regressions and correlative analyses [5–10]. Despite widespread use, some of

these methods are badly biased [11,12] and others are often imprecise [13]. None

of these methods take into consideration species’ shared evolutionary histories.

Historically, ecologists have turned to the Euler equation from demography

[14] to calculate r. The Euler equation is

ð1

0

lðxÞmðxÞe�rxdx ¼ 1; ð1:1Þ

where l(x) is the survivorship to age x (i.e. the proportion of individuals that

survive to age x), and m(x) is the per capita fecundity of female offspring at

age x [15]. To obtain r from equation (1.1), one must have empirical survivor-

ship and fecundity schedules, or must make assumptions about the shape

and scale of those schedules.

In broad comparative analyses, one cannot generally apply equation (1.1)

directly because survivorship and fecundity schedules are so rarely available.

For example, Lynch & Fagan [11] found lifetables for only 58 species across all

approximately 5400 mammals, and the comADRe database, which is a global

& 2013 The Author(s) Published by the Royal Society. All rights reserved.
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compilation of demographic projection matrices, includes

matrices for only 139 mammal species [16]. In addition,

because mammals differ so much in generation times, analyses

based on equation (1.1) can be mathematically unwieldy in

multispecies comparisons [17].

Given these difficulties, comparative analyses exploring the

relationship between life-history and population growth rate

are generally based on an approximation of equation (1.1).

Many authors have adopted a step-function approximation

to l(x), first proposed by Cole [5], which assumes an extreme

form of type I survivorship [18,19]. Although this approxi-

mation is convenient and commonly used, its approach to

survivorship, and its assumption that reproduction occurs on

a strictly annual basis, leads to extreme overestimates of r [11].

An alternative approximation to equation (1.1) assumes

type II (exponential) survivorship and allows for episodic,

pulsed reproduction rather than continuous reproduction

[17]. Both of these biologically realistic modifications are

especially appropriate for mammalian life history. With

these changes, equation (1.1) becomes

m
ð1

0

X1
y¼0

d(x� yD� b) e�ðrþmÞx

8<
:

9=
; dx ¼ 1; ð1:2Þ

where r is the maximum population growth rate, m is the

maximum number of female offspring per reproductive epi-

sode (litter), D is the average interval between litters, b is

the minimum age of first reproduction and m is the average

mortality rate. d(z) is an interval delta function that equals

1/T for 0 , z , T and is zero otherwise, where T is the dur-

ation of the mammalian ‘birth pulse’, which is taken to be one

day [17]. This model does not constrain reproduction to occur

on an annual basis but does assume constant fecundity per

birth event. The integral and sum in equation (1.2) can be

evaluated, yielding

m
ðrþ mÞT

ð1� e�ðrþmÞTÞ
ð1� e�ðrþmÞDÞ e

�ðrþmÞb ¼ 1: ð1:3Þ

In a survivorship analysis spanning 58 mammal species,

values of r from equation (1.2) provided excellent matches

to values obtained via the full empirical schedules, whereas

those from the Cole approximation to equation (1.1) were

badly biased [11,12]. Because equation (1.2) requires only

life-history trait data to estimate r but yields estimates that

agree closely with those obtained from full lifetable data,

this method of calculating r balances reasonable outputs

with limited data requirements [11,12,17]. (Note that the var-

iant of r given in equation (1.2) was denoted r̂ in previous

work to differentiate it from other population growth

measures [11,17]. However, to avoid confusion with the stat-

istical estimates of the trait that appear below, we have opted

for the simpler notation, r, here)

The parameters m, D, b and m are all fundamental life-

history traits shaped by evolution [20]. Collectively, these

traits contribute to functional and performance-related vari-

ation among taxa under conceptual frameworks such as the

fast–slow life-history continuum [21,22]. As calculated in

equations (1.1)–(1.2), r represents a synthetic measure of a

species maximum per capita rate of population growth in

the absence of density dependence. Consequently, r is both

a central measure of population biology and a conservation-

relevant metric that, among other things, characterizes how

quickly a population could increase in size, such as when

recovering after a major disturbance or population collapse.

Note that r is not the realized population growth rate,

which will reflect year-to-year variation in density, demo-

graphic and environmental stochasticity and other factors.

Even though estimating r via equation (1.3) is far less data-

intensive than other widely used methods, this approach

still requires data on life-history traits that are lacking for

many species. In those cases, a method is needed to predict

species’ capacities for population growth in the absence of

species-specific life-history data.

Here, we illustrate how phylogenetic comparative methods

can greatly expand the suite of species for which it is possible

to estimate r. Because individual life-history and ecological strat-

egies are often phylogenetically structured [23], we view r as a

synthetic life-history trait that varies among species within

a clade. This approach is warranted because inheritance from a

common ancestor coupled with phylogenetic inertia routinely

yields situations in which similar trait values cluster across

related species [24]. Furthermore, it is exactly these types of

relationships that, along with shared environmental factors,

underpin the phylogenetic structuring of extinction risk and

endangerment status across species [25–27]. Using established

phylogenies, we examine how successfully macroevolutionary

models recover r-values for well-studied species. We then

leverage phylogenetic relationships and r-values obtained for

well-studied species to predict r for more poorly studied species.

2. Material and methods
(a) Tree-based models
We use phylogenetic independent contrasts (PIC) to predict values

of r for extant species in the context of their shared evolutionary

history [28–30]. This technique assumes a Brownian motion

model for trait evolution, where the variance parameter s2

describes the scale of fluctuations in the unbiased random walk.

Because r is fundamental to a species’ survival, we expect it to

evolve gradually rather than wildly, reflecting critical life-history

trade-offs such as longevity versus fecundity [20].

We consider two PIC models. In the first, r for an extant species

is predicted only from the values of r known for other extant

species and the phylogeny of the clade (‘PIC-r’ model; [29]). In

the second, female body mass is additionally included as a covari-

ate (‘PIC-r-mass’ model; [30]). Body mass estimates were available

for all species included in the phylogenies we used, except for four

species from the Caniformia. We log-transformed body mass for

all comparative analyses. Comparisons among these two PIC

models and the two alternative null models described below

illuminate the forces underlying interspecific variation in r.

Under either model, the phylogenetic position is known for

each species whose value of r was to be predicted. For each of

these ‘unknown’ species in turn, the expected value of r and its

uncertainty was obtained, as detailed by Garland et al. [29, eqn

A10] and Garland & Ives [30, eqn A15] and summarized here.

First, the tree was pruned to contain only the unknown species

and all species with known r-values. Second, the tree was tempor-

arily rooted at the node immediately parental to the unknown tip

species. Third, PIC was used to estimate r at this root. Finally, this

root estimate was extended along the branch to the unknown tip.

Under PIC-r, the expected value of r at the unknown tip was the

same as at the temporary root. Under PIC-r-mass, it depended

also on the difference between tip and root body mass, where

the latter was similarly estimated by PIC. The variance of the esti-

mate for r was increased by s2 (also estimated by PIC) multiplied

by the unknown tip branch length.
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We examine the performance of these approaches via cross-

validation analyses for two mammalian clades, each of which

includes species of conservation interest: the Caniformia (where

r is calculable via equation (1.3) for many species) and the

Cervidae (where data density are lower). We then apply them

to predict r-values for species currently lacking estimates.

(b) Life-history data
(i) Empirical estimates of r
Values of r were calculated by inserting life-history trait

data obtained from published compilations [31–33] into

equation (1.3) [17] (see the electronic supplementary material,

appendix C). We refer to these calculated values as our obser-

vations, against which we contrast our predictions from the

PIC-r and PIC-r-mass models and two alternative null models

(detailed below). When multiple values for particular life-history

traits led to multiple values of r for a single species, we used the

geometric mean of those values in our analyses. Future efforts

will incorporate intraspecific variation in estimates of r and/or

estimates of other measures of population growth rate [12] that

are independently available.

(ii) Body mass
Body mass values were obtained from published compilations

[17,31,32,34].

(c) Phylogenetic trees
Because both of the evolutionary models discussed above work

best in clades with good phylogenetic resolution [35], we exam-

ined the evolution of r in two mammalian groups with well-

studied phylogenies (see the electronic supplementary material,

appendix C). We investigated the carnivore suborder Caniformia

because of the relative wealth of life-history data from which we

could calculate r for caniform species worldwide (65 of 140 species,

see below). We obtained the molecular (cytB), species-level phylo-

geny of the order Carnivora (parent to the Caniformia) from

Agnarsson et al. [36], which includes 82 per cent of taxa in the

order Carnivora, and smoothed it to an ultrametric tree using

the R function chronopl [37].

We also examined the family Cervidae in which estimates of

r were more sparsely available. We used a lower-resolution phy-

logeny for Cervidae, extracted from the Bininda-Emonds et al.
[38] mammalian supertree in an already ultrametric form. This

phylogeny includes 76 per cent of cervid taxa with 45 per cent

bifurcation completeness [38].

Additionally, we considered separately three caniform clades

(the Pinnipedia, Musteloidea and Canidae) and one cervid clade

(the Plesiometacarpalia), each of which had 10 or more species

with estimates of r available. These additional analyses allow

us to consider the possibility that r may evolve differently on

different parts of the tree.

To assess the appropriateness of applying Brownian motion-

based phylogenetic comparative methods to our data, we first

tested for significant phylogenetic signal [39] using a randomiz-

ation test implemented in the R package picante. We also

calculated Pagel’s l [40,41] and used a likelihood ratio test [42]

to assess whether a branch length transform was necessary for

the amount of trait evolution to be proportional to branch length.

(d) Model assessment
(i) Cross-validation
We used leave-one-out cross-validation to test model perform-

ance. For each species with a known r-value, taken one at a

time, this value was ignored and the species was treated as

‘unknown’ in the prediction procedure. This was carried out

for each model, the PIC models described above and the null

models outlined below.

Model performance was assessed in three ways. First, we

assessed general agreement of the predicted and observed values

by examining the relationship between the predicted ð̂rÞ and

observed values for each group of species. Second, we assessed

accuracy by comparing proportional prediction errors, computed

as ð̂r� rÞ=r for each species. (Absolute prediction errors ð̂r� rÞ are

considered in the electronic supplementary material, appendix B.)

Third, we assessed accuracy by scoring the proportion of species

for which the 95% prediction intervals from the model included

the observed r-values.

(ii) Alternative null models
As a benchmark against which to judge the predictive improve-

ment provided by tree-based PIC models for r, we considered an

allometric model in which we used phylogenetically corrected

least-squares regression to account for correlated errors owing to

phylogenetic relatedness [43]. Further justification for the use of

this model, details on its implementation and variants, and discus-

sion of its implications for metabolic theory appear in the electronic

supplementary material, appendix A. The allometric analysis

incorporates non-independence owing to shared evolutionary his-

tory among species when determining the relationship between

body size and r, but it does not consider the phylogenetic position

of an unknown species when predicting its value of r. In other

words, the allometric null regression models represent static map-

pings between female body size and r for the suite of species under

consideration, whereas the PIC models customize predictions for

the target species based additionally on their shared evolutionary

history with the rest of the clade [30].

As a second alternative, we considered a null model that

incorporates neither body mass nor phylogenetic information.

In this model, observed r-values are treated as independent

samples from a normal distribution, for which the mean and var-

iance are estimated from the known species in the clade. This

model, which we term the Brownian motion null model, is

equivalent to the Brownian motion model of r evolution used

by the PIC-r model, but on a star-shaped rather than bifurcating

tree. The allometric null and Brownian motion r-only models

provide contrasts, respectively, with the PIC-r-mass and PIC-r
tree-based models.

(e) Prediction
Using the PIC-r and PIC-r-mass approaches described above, we

estimated values for those members of the Caniformia and Cervi-

dae (75 and 27 species, respectively) for which r was not calculable

from available life-history data. This procedure considered each

unknown tip in turn, analogous to the cross-validation technique.

3. Results
(a) Quantifying phylogenetic conservatism of r
The Caniformia data exhibited a statistically significant level of

phylogenetic signal for population growth rate r ( p , 0.001,

with Blomberg’s K ¼ 0.68) and did not require a branch

length transform to improve the fit of the Brownian motion

trait evolution model that underlies PIC (l ¼ 0.96, p ¼ 0.46).

The same was true for Cervidae, with significant phylogenetic

signal ( p ¼ 0.001, with K ¼ 1.42) and no need for a branch

length transform (l ¼ 0.95, p ¼ 0.81). We therefore proceeded

with the PIC analyses on these data.
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(b) General agreement of tree-based estimates and
observed values of r

In cross-validation tests, predictions from the tree-based PIC-r
and PIC-r-mass models showed good general agreement with

observed values calculated from life-history traits using

equation (1.3) for both the Caniformia and the Cervidae

(figure 1). In the Caniformia, prediction errors from PIC-r
were distributed roughly equally around a 1 : 1 line of corre-

spondence with two exceptions, a diverse group of species

with small–medium-observed values of r (which were overes-

timated) and two species of weasels with large-observed

values of r (which were underestimated; figure 1). Overall,

for both taxa, both the PIC-r and PIC-r-mass models tended

to overestimate r for species with small values of r and to

underestimate r for species with large values of r.

For both groups of species, at least one of the tree-based

models yielded a significant rank correlation between the

predicted and observed values. For the Caniformia, rank corre-

lations were quite strong for both the PIC-r model (Spearman’s

r ¼ 0.82; p , 0.0001) and PIC-r-mass model (Spearman’s r ¼

0.79; p , 0.0001). Thus, the tree-based models were particularly

good at recovering differences in the relative values of r across

species, which varied over a 47-fold range in the caniform

data. In the Cervidae, predicted r̂ and observed r were signi-

ficantly rank correlated for the PIC-r model (Spearman’s

r ¼ 0.55; p , 0.03), which is especially noteworthy considering

the modest level of variation in r among the Cervidae. However,

this did not hold for the cervid PIC-r-mass model, which did

not perform as well as the PIC-r model by other metrics, as

will be discussed below. Overall, the strong and significant

rank correlations emerging from the PIC-r model represented

substantial improvements over the corresponding allometric-

null models (Spearman’s r , 0.60 and ,0.35 for the Caniformia

and the Cervidae, respectively).

(c) Comparison of tree-based and alternative
null models

The phylogenetically corrected allometric null model tended

to yield biased estimates of the observed r (see the electronic

supplementary material, figure S1a,b), overestimating r for 41

of 65 caniform species (mean overestimation ¼ 177%). As

noted above, the tree-based models tended to overestimate r
for small r species, and when such overestimations occurred

they were smaller (e.g. median overestimation of 47% and 6%

for Caniformia and Cervidae, respectively, using PIC-r;

electronic supplementary material, figure S1e–h). For the

Caniformia, PIC-r predictions correlated with the correspond-

ing allometric null predictions, but yielded a relationship

steeper than 1 : 1 (see the electronic supplementary material,

figure S2). Mean prediction errors were always larger for the

allometric null models than for the tree-based models, ranging
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Figure 1. Relationship between observed r as calculated from equation (1.3), and predicted r as estimated by the (a,b) PIC-r model and (c,d) PIC-r-mass model for
(a,c) Caniformia and (b,d) Cervidae. Dashed lines are 1 : 1, representing perfect prediction by the model. Solid lines represent an ordinary least-squares fit
(Caniformia: y ¼ 0.52x þ 0.35, R2 ¼ 0.57; Cervidae: y ¼ 0.22x þ 0.25, R2 ¼ 0.22). In (a,c), individual families are: Ailuridae (closed circles), Canidae (open
circles), Mephitidae (closed triangles), Mustelidae (open triangles), Otariidae (closed diamonds), Phocidae (open diamonds), Procyonidae (closed squares) and
Ursidae (open squares).
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from 2.0 to 2.3� larger for the Caniformia and from 1.1 to 1.3�
larger for the Cervidae, all indicating improvement when using

the tree-based methods (table 1). For the Brownian motion null

model, cross-validation on the null tree yielded very little vari-

ation in predicted r̂ and confidence limits across species (see

the electronic supplementary material, figures S3 and S4)

but entailed substantial prediction errors (see the electronic

supplementary material, figure S1c,d). For example, the Brow-

nian motion null models yielded median prediction errors 3.3�
and 2.4� as big as the best performing tree-based models for

the Caniformia and the Cervidae, respectively (table 1 and

electronic supplementary material, figure S1c– f).
The confidence intervals from the allometric null models

and the prediction ranges from the Brownian motion null

models were typically wide (exceedingly so for the allome-

tric null model whose error structure is determined by the

power-law relationship between r and mass; electronic sup-

plementary material, appendix A; electronic supplementary

material, figures S3 and S4). These ranges from the null

models were much wider than the corresponding ranges

from the tree-based models (which are shown in electronic

supplementary material, figure S5). For example, for the

PIC-r model, 48 of 65 caniform species and 13 of 15 cervid

species had prediction ranges smaller than the corresponding

Brownian motion null models (average improvement: 28%

and 26%, respectively). When using the allometric and Brow-

nian motion null models, nearly all observed values fell

within the estimated confidence intervals or prediction inter-

vals (table 1). However, this result is not an indicator of good

model performance but rather a consequence of the wide

intervals themselves.

(d) General comparisons between the PIC-r and
PIC-r-mass phylogenetic models

Overall, we found better performance by the simple PIC-r
model of trait evolution than by the more complex PIC-r-
mass model (table 1 and figure 1; electronic supplementary

material, figure S1). In particular, we found that the addition

of body mass as a covariate did not improve our ability to pre-

dict r, and for the Caniformia, the inclusion of the mass

covariate actually yielded worse predictions (median prediction

error was 48% larger with PIC-r-mass). This stems from a

bias-variance trade-off: adding the covariate always decreased

bias, such that the predictions were more correct on average,

but the variance increased so the predictive error for some

species was larger.

For both the Caniformia and the Cervidae (and all sub-

groups we examined), estimates of s2, the Brownian motion

variance for r, were marginally, but uniformly, smaller in the

PIC-r-mass models than in the simpler PIC-r models (see the

electronic supplementary material, table S2), suggesting a por-

tion of the evolutionary ‘rate’ signal in r is instead explained

by mass or a trait that covaries with mass. For both Caniformia

and Cervidae, slope estimates from phylogenetically corrected

regressions of PIC-r prediction error against mass are very

nearly zero, helping to explain why the more complex

PIC-r-mass model does not improve fit (see the electronic

supplementary material, appendix A). Another possibility,

that the mass-r relationship is ‘noisy’ and therefore masks the

benefits of including mass as a covariate in the PIC models, is

not supported (see the electronic supplementary material,

appendix B).

Regardless of the tree-based model used, the 95% predic-

tion intervals of r̂ values estimated by the cross-validation

procedure were large (and for the Caniformia, often encom-

passed zero). However, the observed values for 83–86%

and 73 per cent of caniform and cervid species, respectively,

fell within 1 s.e. of the predicted mean (table 1; electronic sup-

plementary material, figure S5). Prediction intervals were

smaller for the PIC-r-mass model than for the PIC-r model

in 55 of 61 species-wise comparisons in the Caniformia, but

shrank by an average of only 1.3 per cent (+0.5 s.e.).

(e) Comparative model performance for the Caniformia,
a case of moderate data availability

For the Caniformia, the better performing PIC-r model yielded

median and mean absolute prediction errors smaller than those

of the PIC-r-mass model (25% versus 37% and 53% versus 61%,

respectively; table 1). In addition, for the better performing

PIC-r model, 75 per cent of caniform species had prediction

Table 1. Cross-validation performance for a phylogenetically corrected allometric null model, a Brownian motion null model and two phylogenetically structured
models of maximum per capita population growth rate in the Caniformia and Cervidae. (The columns ‘within 1 s.e.’ and ‘within 95% CI/PI’ give, respectively,
the proportion of species whose observed r-values fell within 1 s.e. and within the 95% prediction interval PI of the predicted means from the Brownian
motion and PIC models (or within the 95% confidence interval (CI) of the allometric null model). The columns min, median, mean and max characterize the
precision of the different models, determined across species using the absolute value of ð̂r � rÞ=r.)

taxon model within 1 s.e. within 95% CI/PI

prediction errors

min median mean max

Caniformia allometric null 36/65 63/65 0.004 0.77 1.21 6.49

Brownian motion null 58/65 63/65 0.011 0.83 1.71 7.39

PIC-r 56/65 63/65 0.003 0.25 0.53 4.93

PIC-r-mass 51/61 58/61 0.002 0.37 0.61 6.11

Cervidae allometric null 11/15 14/15 0.018 0.08 0.16 0.57

Brownian motion null 12/15 14/15 0.023 0.19 0.19 0.65

PIC-r 11/15 13/15 0.012 0.08 0.13 0.43

PIC-r-mass 11/15 13/15 0.006 0.08 0.15 0.54
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errors less than 62 per cent. Averaged across species, predic-

tions from the PIC-r-mass model were 9 per cent higher than

the corresponding predictions from the PIC-r.

Measured in terms of proportion prediction error (table 1),

the PIC-r model did better than the PIC-r-mass model for

37 out of 61 species (four comparisons were not possible

because of missing data). This included a majority of species

in the Canidae (7 out of 11) and Pinnipedia (13 out of 20). Over-

all, the improvement in proportional prediction error afforded

by the PIC-r model over the PIC-r-mass model correlated posi-

tively with two traits: biomass (r ¼ 0.36; p , 0.004), and mean

lifespan (r ¼ 0.38; p , 0.003). These two traits were themselves

correlated such that neither was significantly correlated to the

decrease in error, once the other was accounted for.

One suite of species (e.g. members of the Lutridae plus

species with long tip-lengths relative to other members of

their clades, such as Potos flavus and Ailuropoda melanoleuca)

tended to have large prediction errors for both tree-based

models (see the electronic supplementary material, figure S6).

Overall, however, we found no correlation between prediction

error and tip length ( p ¼ 0.85).

( f ) Comparative model performance for the Cervidae, a
case of very limited data availability

For the Cervidae, the PIC-r and PIC-r-mass models performed

comparably in terms of accuracy and precision (table 1). Even

with few observations of r available for cervid species, approxi-

mately 87 per cent of the observed values fell within the 95%

prediction interval of the predicted values using either tree-

based model (table 1 and electronic supplementary material,

figure S5). For both models, median prediction error was

approximately 8 per cent, and 80 per cent of species had predic-

tion errors less than 22 per cent (table 1). Prediction errors were

comparable between the PIC-r and PIC-r-mass models across

cervid species (see the electronic supplementary material,

figure S7). Cervid PIC-r prediction errors were positively corre-

lated with inter-litter interval, and negatively correlated with

observed r and mass, but exhibited no correlations with

other life-history traits nor with tip length (see the electronic

supplementary material, appendix B).

(g) Predictions
Reconstruction of r̂ for ancestral nodes and prediction for tip

species in both clades using the best-fit PIC-r models are

shown in figure 2 and reported in electronic supplementary

material, table S1.

4. Discussion
Knowledge of species’ potential population growth rates is

critical for understanding population dynamics and informed

conservation decision-making [44]. Because of this, researchers

have estimated growth rate parameters using demographic

traits in concert with allometric regressions and related

approaches [8,13,17]. By contrast, our approach leveraged

species shared evolutionary history to predict potential popu-

lation growth rates, and it performed well even when only

limited life-history data were available to inform the predic-

tions. The tree-based methods we adopted routinely yielded

credible predictions of r within each of two dissimilar mamma-

lian groups, thereby improving over null models (table 1;

electronic supplementary material, figure S1). Importantly,

application of the modelling approach to the smaller, less

diverse cervid clade proved robust to both limited observed r
data and incomplete phylogenetic resolution, two problems

likely to appear in other taxa.

(a) Relevance to conservation biology and life-
history theory

By leveraging data from better known species to inform

understanding of poorly known species, phylogenetic com-

parative methods help fill a gap in the toolkit of quantitative

conservation biology, providing conservation practitioners

Ursidae

Odobenidae

Otariidae

(a) (b)

Phocidae

Potos

Mephitidae

Procyonidae

Mustelidae

Ailuridae

Canidae

Muntiacus muntjak
Muntiacus gongshanensis
Muntiacus atherodes
Muntiacus reevesi
Muntiacus crinifrons
Muntiacus feae
Elaphodus cephalophus
Dama mesopotamica
Dama dama
Cervus albirostris
Cervus timorensis
Cervus unicolor
Cervus eldii
Cervus alfredi
Cervus nippon
Cervus duvaucelii
Cervus mariannus
Cervus elaphus
Elaphurus davidianus
Axis axis
Axis porcinus
Axis calamianensis
Axis kuhlii
Rangifer tarandus
Odocoileus virginianus
Odocoileus hemionus
Ozotoceros bezoarticus
Hippocamelus bisulcus
Hippocamelus antisensis
Pudu puda
Pudu mephistophiles
Mazama rufina
Mazama gouazoupira
Mazama americana
Mazama bricenii
Mazama chunyi
Mazama nana
Blastocerus dichotomus
Hydropotes inermis
Capreolus pygargus
Capreolus capreolus
Alces alces

Figure 2. Phylogenetic relationships within the (a) Caniformia and (b) Cervidae giving predicted node and tip reconstruction of r̂ for the PIC-r models. The circles at
each tip or node have diameter proportional to values of r ranging from 20.647 to 2.75 (a) and between 0.22 and 0.55 (b). Orange circles represent tips with
observed r-values, green circles show reconstructed nodes from which tips were predicted and blue circles represent unknown, predicted tips. For green and blue, the
darker inner and lighter outer circles show the estimated r̂-value minus or plus the s.e., respectively.
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with a method for predicting species’ capacities for popula-

tion growth when no species-specific trait data are available

(figure 2; electronic supplementary material, table S1). Without

the appropriate suite of life-history trait data, it is not possible

to parametrize equations (1.2)–(1.3) for a focal species. Pre-

viously, this left conservation practitioners without much

guidance as to that species’ capacity for population growth

or recovery (but see [45]). By contrast, using phylogenetic com-

parative approaches, researchers can estimate r for poorly

known species reasonably accurately, and with an assessment

of uncertainty.

Estimating r via tree-based prediction methods may be

especially advantageous to managers seeking ways of compar-

ing species with regard to their needs or risks. For example, in

landscape-specific comparisons across several species, infor-

mation on r, whether observed or predicted, may be viewed

as an index of species’ vulnerabilities to extinction processes

owing to a common threat [46,47]. The widespread agreement

between observed r and mean predicted r̂-values we found

here (figure 1) highlights the potential use of this PIC approach

for multispecies prioritization efforts. Moreover, the strong rank

agreement that we observe offers planners reassurance that

species predicted to be especially vulnerable because they

have low r̂ will actually have low maximum population

growth rates compared with other species. Ranking species’

vulnerabilities using phylogenetically predicted estimates of r̂
would be most useful in data-poor situations where a suite of

species faced a common external threat, as opposed to the

(much rarer) data-rich situations in which formal assessments

of extinction risk via population viability analyses are possible.

Beyond conservation-relevant results, our efforts have the

additional benefit of introducing a joint empirical–theoretical

framework for explicitly modelling key aspects of the ‘ecogenetic

loop’ that links life-history traits, demography and evolution

[48,49]. Specifically, future work could compare how well

these macroevolutionary models perform for various life-history

quantities, such as those in equations (1.2)–(1.3), both relative to

one another, and relative to r as a synthetic life-history trait (see

the electronic supplementary material, appendix B). Continued

development of macroevolutionary models for r and other life-

history traits should yield insights into the limits of demographic

plasticity across species and, at the same time, increase our

understanding of species resilience [50].

(b) Statistical considerations
Just how much information (e.g. observed r-values, covari-

ates) is necessary to accurately estimate r will depend on

several factors, including the size and resolution of the avail-

able phylogenies, the relative positions of the well-studied

and poorly known species within those phylogenies, and

interspecific variability in r. In broad terms, the same kinds

of ‘data density’ considerations that are important in using

PIC to predict other traits (e.g. colour, morphology and be-

haviour) will be important in applications that use PIC to

predict r [23,24,30]. For example, achieving more accurate

and more precise predictions of r for ‘unknown’ species

depends upon the location of the closest node with at least

two ‘known’ descendants, and one should obtain better

predictions from shallower rather than deeper nodes. Put

another way, efforts to improve accuracy and narrow predic-

tion intervals for unknown species in poorly sampled clades

would benefit more from new data on closely related species

than they would from observations elsewhere on the tree. For

instance, note that the median and mean cervid prediction

errors were three to four times smaller than the caniform

errors, even though the Caniformia included over four

times as many observed species.

Branch length may also influence the robustness of the pre-

dicted r̂-values. Most obviously, longer branch lengths are

associated with less precise estimates because variance under

the Brownian motion model increases linearly with elapsed

time. In addition, long branch lengths may also lead to less accu-

rate predictions. Any evolutionary deviation from the Brownian

motion model of trait evolution (e.g. a sustained trend) would,

in theory, lead to a statistical deviation from the value predicted

under Brownian motion. Such deviations would be amplified

on long branches where the mean, as well as the variance, of

the true process could depart from predictions.

Overall, this suite of potential statistical difficulties

implies that it may prove especially difficult to use PIC-based

approaches to estimate r for species that are phylogenetically

distinct because of a long period of evolutionary isolation.

This is potentially problematic because such phylogenetically

distinctive species are often priorities for conservation efforts

simply because of their distinctiveness and the unique evol-

utionary histories they embody [51,52]. However, as noted

above, we found no systematic correlation between tip length

and error magnitude, but only hints of such difficulties in

our cross-validations of particular species with long tip lengths

(e.g. P. flavus and A. melanoleuca; electronic supplementary

material, figure S6).

Another very different source of prediction errors involves

our confidence in the phylogenetic trees themselves. Although

we did not consider the influences of phylogenetic uncertainty

on model prediction, our methods could be applied to each

tree in a sample from the posterior distribution obtained

during phylogeny estimation. Prediction intervals from ana-

lyses on single trees could then be compared with variability

in the estimated r-values across multiple trees to determine

the contribution of phylogenetic uncertainty.

(c) Future directions
We expected the PIC-r-mass model to improve upon the results

from the simpler PIC-r model. However, with the exception of

some narrower prediction intervals (see the electronic supplemen-

tary material, figure S5), such improvement was lacking (table 1

and figure 1; electronic supplementary material, figure S1).

These results stem, at least in part, from the largely similar per-

formance of the PIC-r model across species irrespective of

differences in mass. These results echo findings in Lynch &

Fagan [11] where mass was not a good predictor of mammalian

r as estimated from life table data, but other traits, such as trophic

level and diet were. Relationships among r, prediction errors from

the PIC-r model, mass and individual life-history traits are

detailed in electronic supplementary material, appendix B.

Given the interdependencies among life-history traits and

population growth (see the electronic supplementary material,

appendices A and B; see also [45]), improved PIC approaches

may be possible using non-mass traits as covariates of the evol-

utionary model. That is, even if we lack sufficient life-history

data to calculate r for one of the poorly known species, we

may have data on one or more of the life-history parameters that

enter equations (1.2)–(1.3). Traits such as age at first reproduc-

tion or average litter size covary with measures of population
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growth rate across diverse species [8,45], and including them

as covariates in our macroevolutionary models might sharpen

predictions of how r evolves across species. The potential impor-

tance of such a future extension is made clear by the cross-

validation errors that occurred in isolated cases where certain

species had r much different than their neighbours on the phy-

logeny. For example, compared with closely related species,

the short-tailed weasel Mustela erminea (Caniformia: Mustelidae)

had an unusually large r-value that was driven largely by a

young age at first reproduction (e.g. females of this species are

often mated before being weaned [53]; electronic supplementary

material, figure S5a).

Another future direction would be to include more complex

models of character evolution. In particular, a complicating

factor not accounted for in our analysis is the potential effect

of r on extinction or speciation rates. Population growth rates

have previously been used as a proxy for evolutionary fitness

and have been implicated as potential drivers of diversity

[54,55] and diversification rate [56]. Because species with low r
are less able to recover from low population size, they may there-

fore be more prone to extinction. Similarly, correlations between

r, generation time and rates of molecular evolution [6,57,58] may

lead to a positive association between r and speciation rate.

Effects of traits on diversification rate are not naturally incorpor-

ated in the PIC framework, but a recent phylogenetic model of

the evolution of a continuously valued character that affects

diversification [59] presents an alternative approach to model

the evolution of population growth rate while disentangling

its effects on speciation and extinction rates.
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