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It is widely assumed that phenotypic traits can influence rates of speciation and extinction, and several statistical approaches have

been used to test for correlations between character states and lineage diversification. Recent work suggests that model-based

tests of state-dependent speciation and extinction are sensitive to model inadequacy and phylogenetic pseudoreplication. We

describe a simple nonparametric statistical test (“FiSSE”) to assess the effects of a binary character on lineage diversification rates.

The method involves computing a test statistic that compares the distributions of branch lengths for lineages with and without

a character state of interest. The value of the test statistic is compared to a null distribution generated by simulating character

histories on the observed phylogeny. Our tests show that FiSSE can reliably infer trait-dependent speciation on phylogenies of

several hundred tips. The method has low power to detect trait-dependent extinction but can infer state-dependent differences

in speciation even when net diversification rates are constant. We assemble a range of macroevolutionary scenarios that are

problematic for likelihood-based methods, and we find that FiSSE does not show similarly elevated false positive rates. We

suggest that nonparametric statistical approaches, such as FiSSE, provide an important complement to formal process-based

models for trait-dependent diversification.
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Rates of lineage diversification are widely assumed to depend on

biological properties of the lineages themselves. Mating system,

trophic ecology, defense syndromes, population structure, and

many other organismal and population-level attributes have been

hypothesized to influence the rate at which lineages undergo spe-

ciation and extinction (Arnold and Fristrup 1982; Jablonski 2008;

Ng and Smith 2014). Several statistical frameworks have been

used to test hypotheses about the effects of traits on diversifica-

tion rates, including nonparametric or semiparametric sister-clade

contrasts and probabilistic state-dependent diversification (SDD)
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models. Sister clade contrasts involve comparing the species rich-

ness of sister clades that show fixed differences in a character

state of interest; the focal trait is inferred to influence diversifica-

tion if a particular character state is consistently associated with

higher (or lower) species richness (Mitter et al. 1988; Hodges

1997; Farrell 1998; Coyne and Orr 2004). Formal SDD models

describe a stochastic process that can jointly give rise to a phy-

logeny and character state data, where character states potentially

differ in rates of speciation and/or extinction (Maddison et al.

2007; FitzJohn et al. 2009; FitzJohn 2010; Goldberg et al. 2011).

These likelihood-based approaches enable researchers to conduct

statistical comparisons of models where character states influ-

ence diversification to alternative models where the phenotypic

evolutionary process is decoupled from speciation and extinction

rates.
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Sister-clade contrasts are intuitively appealing but suffer

from several limitations (Maddison 2006; Käfer and Mousset

2014). Most importantly, asymmetric rates of character change

can lead to ascertainment biases whereby one character state is

consistently associated with increased species richness when sis-

ter clades are selected for analysis based on fixed trait differences

(Maddison 2006). This effect can be observed even in the absence

of any true relationship between traits and diversification. BiSSE

(Maddison et al. 2007) and related SDD models were developed in

part to enable researchers to disentangle asymmetries in character

change from state-dependent diversification.

However, recent work has found that statistical comparison of

SDD models is prone to incorrect inferences of state-dependent

diversification, due to both phylogenetic pseudoreplication and

model inadequacy (Maddison and FitzJohn 2015; Rabosky and

Goldberg 2015). Rabosky and Huang (2015) proposed a struc-

tured permutation test for state-dependent diversification, but the

method is only applicable to phylogenies that are large enough

to infer lineage-specific variation in diversification rates indepen-

dently of phenotypic information (using rate-shift models such

as BAMM or MEDUSA; Alfaro et al. 2009; Rabosky 2014),

and it has little power for rapidly evolving traits. Beaulieu and

O’Meara (2016) proposed an expanded SDD modeling frame-

work that compares the fit of state-dependent models to those of

a more complex set of models that includes the effects of latent

variables on diversification rates. Their approach avoids issues

associated with comparing state-dependent models to trivial (and

likely incorrect) null hypotheses, but it may still be susceptible

to phylogenetic pseudoreplication and model inadequacy if the

“true” model is substantially different from those in the candidate

set.

Here, we introduce a simple method for testing the effects

of a binary character on diversification. The method, which we

refer to as FiSSE (Fast, intuitive State-dependent Speciation-

Extinction analysis), is effectively nonparametric and does not

use an underlying model for character change or species diver-

sification. We assess its performance on datasets simulated with

or without state-dependent diversification and character change

asymmetries, and also on simulated and empirical datasets known

to reveal weaknesses of formal SDD models. We conclude that

FiSSE is robust to both phylogenetic pseudoreplication and model

inadequacy, and that it can be useful on even moderately sized

trees.

Methods
DESCRIPTION OF FiSSE

FiSSE is a simple statistical test for the effects of a binary char-

acter on rates of lineage diversification. It provides estimates of

“quasi-parameters” that are correlated with, but not identical to,

underlying rates of speciation. The quasi-parameters can be inter-

preted intuitively because they are related to the distributions of

branch lengths associated with each character state. Significance

of the quasi-parameters is assessed by comparing the observed

values to a null distribution that is generated through simulation.

Construction of the null distribution is relatively fast and is limited

primarily by the speed at which trait histories can be simulated

on the tree.

The test involves several steps. To obtain the test statistic,

we first compute an estimate of speciation rate for each tip in the

tree using the inverse equal splits measure proposed by Jetz et al.

(2012; outlined below). We then compute the mean tip speciation

rate associated with each character state, and the difference in

these mean values is the test statistic. To obtain the null distri-

bution of that test statistic, we first fit a one-parameter Markov

model of symmetric character change (Mk1 model; Jukes and

Cantor 1969; Lewis 2001) to the observed data. We then simulate

histories of neutral characters on the empirical phylogeny using

this parameter value. For each simulation, we count the number

of inferred character changes under a parsimony criterion, and

we accept only those simulations that have a parsimony score

that is similar to the score computed for the empirical data. This

procedure generates histories for characters that do not affect di-

versification, but that contain approximately the same number of

state changes as the observed data. The test statistic is then com-

puted for each simulated dataset, and the two-tailed significance

is simply the proportion of simulations with values more extreme

than the observed test statistic.

The equal splits (ES) measure was originally proposed as an

index of evolutionary isolation that could be computed for each

tip in a resolved phylogenetic tree (Redding and Mooers 2006).

The ES metric for a given tip is computed as a weighted sum

of branch lengths between the tip and the root of the tree. The

weights are a simple downweighting of each successively more

rootwards branch by a factor of 0.5. The ES metric for the i’th tip

is computed as

ESi =
Ni∑

j=1

l j
1

2 j−1

where Ni is the number of branches connecting the tip to the root,

and lj is the length of the j’th branch.

Jetz et al. (2012) demonstrated that, under a pure-birth pro-

cess, the reciprocal of ES is an estimate of the speciation rate,

λ, and they proposed that this be used as an estimate of the

tip-specific diversification rate. They referred to 1/ES as the

DR (“Diversification Rate”) statistic. However, the metric does

not explicitly account for extinction and is simply a measure

of the splitting rate for surviving lineages. Jetz et al. (2012) and

Belmaker and Jetz (2015) also noted that the metric is more closely
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related to the speciation rate than to net diversification. Hence, the

reciprocal of ES is a quasi-parameter that imperfectly estimates

the speciation rate at the tips of the tree. We refer to this quantity

as the “inverse equal splits measure.” For the i’th tip, we represent

it symbolically as �t
i , where the superscript indicates that it is the

value for a single tip. The test statistic for FiSSE is computed as

�� = �0 − �1 = 1

N0

∑

i∈{x0}

1

�t
i

− 1

N1

∑

i∈{x1}

1

�t
i

where the Nk tips in state k comprise the set xk, and �k denotes

the mean rate across all Nk tips in that state. The direction of

the comparison is, of course, arbitrary (either character state can

assume the label of 0 or 1).

To construct the null distribution, we first compute the num-

ber of parsimony changes on the observed data, denoted Cobs.

We then estimate the transition rate q under a symmetric Mk1

model. A single simulation consists of the following steps. We

first choose a root state (0, 1, with equal probability) and simulate

character histories with transition rate q. We then count the number

of parsimony changes for each simulated character history, Csim,

and we compute the absolute value of the difference between this

quantity and the observed number of changes. If |Csim – Cobs|/Cobs

is less than some predefined threshold, we accept the simulation

as valid. For the analyses below, we used a threshold of 0.1, thus

requiring that simulated datasets have a parsimony score that is

within 10% of the value of the empirical data. Using a threshold

greater than 0 avoids imposing overly restrictive simulation con-

ditions on the generation of the null distribution. For example, for

datasets with large numbers of character transitions, requiring that

Csim exactly equal Cobs imposes a high computational burden on

the analysis, as a high percentage of simulations will be rejected.

Our additional tests (Fig. S1) indicate that relaxing the threshold

to 25% causes little difference in the significance assessment.

FiSSE is implemented in R. The analyses described below

use “diversitree” (FitzJohn 2012) for simulation of discrete char-

acters and “phangorn” (Schliep 2011) for reconstruction of char-

acter changes under parsimony. Code to reproduce these analy-

ses is available through the Dryad submission that accompanies

this article (DOI: 10.5061/dryad.b277d) and through a dedicated

GitHub repository (https://github.com/macroevolution/fisse).

Although FiSSE does not formally model the association be-

tween character states and diversification, the mean inverse ES

metric computed for each character state, �k, is an intuitive quan-

tity related to the average branch length associated with a partic-

ular character state. Obviously, we do not know the true character

states except at the tips of the tree. However, the weighting of

the ES calculation ensures that branches closest to the tips con-

tribute most to the overall value of ES, and it is this portion of the

tree that is most likely to be identical in character state to the tip

observations.

PERFORMANCE OF FiSSE

We assessed performance of FiSSE using three general strate-

gies. First, we analyzed datasets simulated under parameters that

loosely match those used in the original assessment of BiSSE’s

performance (Maddison et al. 2007; FitzJohn et al. 2009). Sec-

ond, we repeated Rabosky and Goldberg’s (2015) analysis of neu-

tral characters simulated on empirical avian phylogenies under a

range of transition rates. Finally, we performed a double-blind

assessment of FiSSE and BiSSE on a wide range of datasets.

The researcher who performed the FiSSE analysis was not pro-

vided with information about how the data were generated, and

the researcher generating the datasets was not provided with in-

formation about the FiSSE algorithm.

For the first set of analyses, with parameters similar to those

used by Maddison et al. (2007), we simulated datasets with (i)

no state-dependent diversification (λ0 = λ1, μ0 = μ1), (ii) state-

dependent speciation only (λ0 � λ1), (iii) state-dependent ex-

tinction only (μ0 � μ1), and (iv) state-dependent speciation and

extinction such that net diversification rates were equal for both

character states (λ0 – μ0 = λ1 – μ1). For each scenario, we sim-

ulated 1000 phylogenies using diversitree (FitzJohn 2012), 200

each for n = 100, 200, 300, 400, or 500 surviving tips per tree.

For simulations without state dependence, we used λ0 = λ1 =
0.1, μ0 = μ1 = 0.03, and q01 = q10 = 0.01. For simulations

with state-dependent speciation only, we considered a twofold

increase in the rate of speciation, such that λ0 = 0.1 and λ1 =
0.2, and with all other parameters fixed to the values given above.

For state-dependent extinction, we considered a scenario where

the net diversification rate increased twofold, but where the in-

crease was mediated solely by a change in the extinction rate:

λ0 = λ1 = 0.2, μ0 = 0.1, and μ1 = 0. Finally, we considered

two parameterizations where the net diversification rate was equal

across character states but where the turnover rate varied. These

parameterizations were λ0 = 0.1, λ1 = 0.2, μ0 = 0.03, μ1 = 0.13;

and λ0 = 0.1, λ1 = 0.3, μ0 = 0.03, μ1 = 0.23. These scenarios

involve 2× and 3× increases in the rate of speciation for state

1, respectively, but the net diversification rate is 0.07 for each

state.

We then simulated the evolution of neutral characters on phy-

logenies sampled from a much larger time-calibrated phylogeny

of birds (Jetz et al. 2012), following the analyses described in

Rabosky and Goldberg (2015). We analyzed the maximum-clade

credibility tree for the “Hackett” backbone of the Jetz et al. (2012)

phylogeny, after excluding all species that lacked genetic data;

the resulting phylogeny contained 6670 taxa, about two-thirds of

living bird species. We identified all rooted subtrees from this

phylogeny that contained 200–500 descendant taxa, for a total of

60 subtrees. We simulated binary traits on each of these phyloge-

nies under five phenotypic evolutionary scenarios, after rescaling

the crown age of each subtree to 1.0 time units before the present.
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The first four scenarios specified a symmetric Markov model of

character evolution, with transition rates of q = 0.01, q = 0.1,

q = 1, and q = 10. The final scenario involved asymmetric rates

of character change, with q01 = 0.02 and q10 = 0.005. This final

scenario is especially important for FiSSE, whose null distribu-

tion is generated under a symmetric model of character change.

For each simulation, we required that the rarer character state

obtain a frequency of at least 10%. A total of 10 datasets were

simulated for each of the 60 subtrees under the five evolutionary

scenarios. Each dataset was analyzed with FiSSE as described

above.

DOUBLE-BLIND ASSESSMENT OF FiSSE AND BiSSE

Our third set of analyses is a double-blind assessment of FiSSE’s

performance. One author (DLR) implemented FiSSE but did not

reveal any details of the method to the other author (EEG), other

than to describe it as a statistical test for binary trait-dependent di-

versification. EEG then generated trial datasets under 42 distinct

state-dependent and nonstate-dependent diversification scenarios

and parameterizations, but DLR had no knowledge of the gener-

ating scenarios. EEG provided DLR with a full set of phylogenies

and character data, stripped of any attributes that might identify

the simulation conditions or empirical sources. Each of the 42

simulation scenarios consisted of a set of phylogenies with binary

trait data, with 50 such datasets per scenario. DLR analyzed all

2000 datasets with FiSSE and BiSSE and provided EEG with a

summary of the results. EEG then prepared a report on the rela-

tive performance of the two approaches, focusing in particular on

statistical power and the rate at which the methods inferred state-

dependent diversification when no such relationship was present

in the data. Following initial assessment and peer review of this

article, we created and analyzed an additional eight datasets that

were designed to test the limits of the FiSSE approach. These

sets do not follow the double-blind procedure, and they are dis-

tinguished in the results.

Simulation scenarios and analysis summaries are provided

in Tables S1 and S2. Set numbers are based on the results

and thus were assigned after analysis. The test sets them-

selves are available from the Dryad submission that accompa-

nies this article, and the generating scripts are available from

the Phylogenetic Comparative Methods Benchmark database

(https://github.com/eeg/PhyCoMB). As a partial list, the test-

ing scenarios included (i) true BiSSE scenarios with fast, slow,

and asymmetric rates of character change; (ii) cladogenic state-

dependent change; (iii) continuous-valued state-dependent sim-

ulations with traits recoded as binary; and (iv) neutral character

simulations (fast, moderate, slow, irreversible, heterogeneous, and

continuous-valued recoded as binary) on both simulated and em-

pirical phylogenies. For neutral character simulations (no state-

dependence), the phylogenies on which characters were simulated

included diversity-dependence, diversification rate shifts, mass

extinctions, and other heterogeneity in speciation and extinction

rates. In general, the conditions explored here (Table S1 and S2)

greatly expand upon the general set of conditions from our previ-

ous assessment of BiSSE’s performance (Rabosky and Goldberg

2015).

For comparison with FiSSE’s performance, we also fit four

BiSSE models to each simulated dataset: (i) the full six param-

eter BiSSE model; (ii) a five-parameter constrained model with

μ0 = μ1, (iii) a five-parameter model with λ0 = λ1, and (iv)

a four-parameter, character-independent model with λ0 = λ1

and μ0 = μ1. We performed a likelihood ratio test of the best

state-dependent model against the four-parameter model with no

state-dependence. Beaulieu and O’Meara (2016) described weak-

nesses in this commonly used model comparison approach and

suggested instead focusing on parameter estimates. We therefore

also assessed the significance of state-dependent diversification

for each dataset using MCMC to simulate posterior distributions

of net diversification rates for each character state (ri = λi – μi)

under the full BiSSE model. We summarized significance as the

posterior probability (two-tailed) that |r1 – r0| > 0.

We also performed a second set of analyses where we ex-

panded the candidate model set to include two “hidden-state”

models (Beaulieu and O’Meara 2016). Beaulieu and O’Meara

(2016) noted that support for an SDD model when the true gen-

erating process has no association between the character and

speciation or extinction rate is not necessarily a “type I error”

or “false positive” if the null non-SDD model is itself incor-

rect. This is a valid concern for BiSSE model comparisons when

the data were not generated under the constant-diversification

(λ0 = λ1, μ0 = μ1) process, and many of our testing sets in-

cluded diversification rate heterogeneity that was unlinked to the

focal character. Following Beaulieu and O’Meara (2016), we in-

cluded a null model (CID-2) that allowed diversification rates to

vary across the tree through association with an unobserved bi-

nary character state. We also included a full HiSSE model, which

allows unobserved substates within each of the observed charac-

ter states to influence the diversification process. Unlike CID-2,

HiSSE is a state-dependent model because the observed states

of the focal character are used to explain (in part) diversification

rate differences. Both the CID-2 and HiSSE models had three

transition rates, so that transitions between the states of the focal

character were asymmetric and independent of the hidden state,

and transitions between the hidden states were symmetric. We

fit the CID-2 and HiSSE models to each test set using the R

package “HiSSE” (Beaulieu and O’Meara 2016). We computed

AIC scores for each model, including the four BiSSE models de-

scribed previously. We concluded that state-dependent diversifi-

cation was present if the best overall model with state dependence

(HiSSE or any of the three SDD BiSSE models) was supported by
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�AIC > 2 relative to the best character-independent model (CID-

2 or the four-parameter non-SDD BiSSE model). We also per-

formed a second set of comparisons excluding the full HiSSE

model, thus ensuring that the nontrivial null model (CID-2) has

the same complexity as the most-complex SDD model (BiSSE).

The CID-2 and HiSSE results were obtained when the testing

regime was no longer blinded.

Results
For phylogenies simulated in the absence of diversification rate

heterogeneity (non-SDD), we find that, like BiSSE, FiSSE rejects

the non-SDD null at an appropriately low frequency (Fig. 1A).

For state-dependent speciation rates, under the parameter values

tested by Maddison et al. (2007), we find that FiSSE can also

reliably infer SDD, although power is modest for phylogenies

with fewer than 300 tips (Fig. 1B). For this scenario, BiSSE has

substantially greater power to infer SDD on small trees, but power

to reject the non-SDD null hypothesis is similar for the two meth-

ods on phylogenies with at least 300 tips. FiSSE has low power

to infer state-dependent extinction, and even though this is also

challenging for BiSSE, it performs much better overall (Fig. 1C).

FiSSE and BiSSE both have high power to infer state-dependent

speciation, even when net diversification rates are constant across

character states (Fig. 1D). Figure S2 shows the relationship be-

tween two-tailed P-values and the number of parsimony-inferred

state changes for this set of analyses; in general, power to detect

SDD increases as a function of the parsimony score. Power to

detect true SDD was low when simulated datasets contained five

or fewer parsimony changes, with SDD correctly inferred in only

22% of simulations. For datasets with more than five but fewer

than 10 changes, power increased to 52%; datasets with more than

10 changes correctly inferred SDD in 85% of simulations.

The quasi-parameters �k (the average of 1/ES for tips in

state k) are not estimated using a formal diversification model,

and we tested whether the state-specific estimates �0 and �1

were correlated with the true values of speciation in the generat-

ing model. Figures 2 and 3 illustrate the relationship between �k

and true speciation rates (λk) for each character state. For state-

dependent speciation simulations with state-independent extinc-

tion, the �i substantially overestimate the λi, but �� was only

slightly more than the speciation rate difference. However, for

simulations performed with constant net diversification but state-

dependent speciation and extinction, estimates of �� were lower

than the difference in speciation rates but higher than the differ-

ence in net diversification rates (Fig. 3). These results suggest than

� is correlated with true speciation rates for character states, but

also that the relationship between the quasi-parameters and the

true rates may be complex. The overestimate of true speciation

rates evident in Figures 2 and 3 may reflect an ascertainment bias

similar to the “push of the past” discussed by Nee et al. (1994),

whereby phylogenies that survive to the present to be observed

are characterized by an apparent excess of early speciation events

(Phillimore and Price 2008).

For neutral characters simulated on the empirical bird phylo-

genies (a non-SDD process), we previously showed that the BiSSE

non-SDD model (constant λ and μ across the tree) is frequently

rejected (Rabosky and Goldberg 2015; presumably because the

null model of constant speciation and extinction rates is incorrect;

Beaulieu and O’Meara 2015). For FiSSE, however, we do not

find elevated false positive rates with this set of trees (Fig. 4),

even for high transition rates that exacerbated the problem with

BiSSE (see Fig. 7 from Rabosky and Goldberg 2015). Further-

more, even when the FiSSE null model is violated by asymmet-

ric transition rates, the FiSSE test does not return a statistically
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Figure 1. Proportion of simulated datasets where significant state-dependent diversification was detected using FiSSE (circles) and BiSSE

(diamonds). (A) Control: no state-dependence in simulation model. (B) State-dependent speciation only. (C) State-dependent extinction

only. (D) State-dependent speciation and extinction, but net diversification rate constrained to be constant (r0 = r1 = 0.07, λ0 = 0.1, λ1

= 0.2).
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Figure 2. Relationship between mean tip-specific � estimates for two character states for phylogenies simulated with (filled circles) and

without (open circles) state-dependent diversification (SDD). True speciation rates are illustrated with solid (non-SDD) and dashed (SDD)

gray lines. Panel (A) shows all simulated trees, and panel (B) shows only those datasets where FiSSE reported a significant association

between the character state and diversification. Parameters for non-SDD phylogenies: λ = 0.1, μ = 0.03, q = 0.01; SDD parameters: λ0 =
0.1, λ1 = 0.2, μ = 0.03, q = 0.01). For SDD phylogenies, mean estimates for �0 and �1 were 0.140 and 0.253, respectively.

significant result. It thus appears that FiSSE is robust to viola-

tion of its assumptions about the underlying process of character

change.

To investigate this robustness further, we used a double-blind

performance assessment. We found that FiSSE and BiSSE had

broadly comparable power to infer true state-dependent diver-

sification (Fig. 5A), although BiSSE performed better in most

simulation scenarios. FiSSE had greater power than BiSSE in

one scenario (0.28 vs 0.02; scenario 1 in Fig. 5A; Table S2),

entailing state-dependent diversification under a cladogenetic
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Figure 3. Relationship between mean tip-specific � estimates for two character states for phylogenies simulated with twofold (A) and

threefold (B) increases in the speciation rate for the derived character state while holding net diversification rates constant (r0 = r1).

True speciation rates for each state are illustrated by dashed lines. Results in (A) are based on the same set of phylogenies that underlie

results shown in Figure 1D. For simulations with a twofold increase in speciation, the mean estimate for �� was 0.063 (compare with

true �λ = 0.1); with a threefold increase in speciation rate, the mean estimate for �� was 0.130 (true �λ = 0.2).
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Figure 4. False positive rates for FiSSE when neutral characters

are simulated on the avian empirical phylogenies (a non-SDD pro-

cess). Five transition rates are illustrated; a total of 600 simulated

datasets (60 phylogenies, 10 replicates per tree) were analyzed

for each transition rate. The “Asymm” scenario specified a four-

fold difference in the relative transition rate between the two

character states (q01 = 0.02, q10 = 0.005).

model of character change (Magnuson-Ford and Otto 2012; Gold-

berg and Igić 2012). FiSSE’s power relative to BiSSE was low-

est when character state changes were very rare (scenario 12).

For this scenario, the rate of character state change was approx-

imately two orders of magnitude lower than the speciation rate,

and most (80%) of the simulated trees contained only a single

parsimony-inferred state change. Because of the lack of repli-

cation in diversification rate shifts in this scenario, we question

whether recovering the generating model, by inferring SDD, is

the desired outcome for evolutionary inference.

False positive rates with FiSSE were generally acceptable

across the range of non-SDD simulation scenarios considered

(Fig. 5B). The mean proportion of datasets that were incorrectly

inferred to show SDD across all 34 non-SDD scenarios was 0.055.

No scenario showed a rejection rate in excess of 0.18. Six sce-

narios had rejection rates of 0.1 or more; these included both

simple birth-death trees and trees with diversification rate shifts,

but they tended to be scenarios with slow, erratic, or asymmet-

ric trait change (although other scenarios with these trait change

properties fared better). The elevated false positive rates in at

least several of these scenarios are not simply due to the rela-

tively small number of simulations (50) per scenario. We verified

this by creating an additional 500 datasets under the two testing

scenarios where FiSSE showed the highest false positive rates;

repeating FiSSE on these expanded sets yielded false positive

rates of 0.21 and 0.19 (for scenarios 37 and 47, respectively).

For the BiSSE-only comparisons (no HiSSE/CID-2), the mean

proportion of significant SDD inferences across the 34 non-SDD

simulation scenarios was 0.35. The highest values with BiSSE

occurred when neutral characters were simulated on empirical

phylogenies or phylogenies that had been generated under com-

pound (multiregime) diversity-dependent processes. We obtained

generally congruent results when making inferences from the rate

parameter estimates rather than model comparisons (probability

that the r1 – r0 difference excludes zero, inferred from MCMC).

The results were qualitatively similar to those presented in
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Figure 5. Performance assessment of FiSSE (circles) and BiSSE (diamonds) across scenarios with (A) and without (B) state-dependent

diversification (SDD). All scenarios are described in Tables S1–S2. The eight scenarios tested when the assessment was no longer double-

blind are marked with asterisks. Proportion significant for (A) is power to detect a true relationship between traits and diversification.

Proportion significant for (B) is the fraction of simulated datasets where FiSSE or BiSSE reported a significant association for neutral

characters simulated independent of the diversification process. FiSSE generally has lower power than BiSSE to detect state-dependent

diversification when it is present, but it is characterized by a substantial reduction in the false positive rate. These results compare BiSSE

against the simple four-parameter constant-rate null model.
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Figure 6. Performance of an expanded set of BiSSE-class models across testing scenarios with (A) and without (B) state-dependent

diversification (SDD) when the null model set is expanded to include a character-independent model with two unobserved diversification

states (CID-2). Scenarios are the same as in Figure 5; see Tables S1 and S2 for details. BiSSE (triangles) is the proportion of simulations

where the BiSSE model was substantially favored (�AIC > 2) over both character-independent models (constant-rate and CID-2). BiSSE

+ HiSSE (squares) is the proportion of simulations where either BiSSE or HiSSE identified significant state-dependent diversification

associated with the focal character, relative to the constant-rate and CID-2 null models. State-dependent diversification is concluded

when either the BiSSE or HiSSE model fits the data better than the two null models, and we thus present the combined proportion

of simulations where SDD was inferred. Table S2 further breaks down the BiSSE + HiSSE category into “BiSSE best” and “HiSSE best”

subcategories. Results for FiSSE are identical to those shown in Figure 5 and are included here for comparison. In panel (A), BiSSE and

BiSSE + HiSSE typically had identical statistical power, such that symbols are overplotted.

Figure 5, although both statistical power and rates of incorrectly

inferring SDD were somewhat lower (Fig. S3).

In the results thus far reported, BiSSE was compared against

a very simple null model that allows no diversification rate hetero-

geneity. We relaxed this restriction by comparing BiSSE against

the CID-2 model, which allows for diversification rate shifts tied

to a hidden character rather than the focal character. This often

substantially reduced BiSSE’s false positive rate (it decreased by

0.3 or more in 11 of the 34 scenarios) while maintaining statistical

power (Fig. 6, BiSSE; triangles). BiSSE’s highest false positive

rates (> 0.4) when CID-2 was included as a null model involved

neutral characters simulated on empirical supertrees (scenarios

41–42, Fig. 6). However, several other simulation conditions—

even on the same empirical phylogenies—were markedly less

problematic for BiSSE when it was compared against CID-2 rather

than against the four-parameter null model alone. The scenarios

with next-most-elevated BiSSE false positive rates (0.3 and 0.24

for scenarios 36 and 34) involved slowly evolving neutral traits,

suggesting that phylogenetic pseudoreplication remains a chal-

lenge for this class of model.

Finally, we added the HiSSE model to the comparison, allow-

ing hidden substates contained within the focal characters to affect

diversification. Power to detect true SDD scenarios was similar for

BiSSE + HiSSE as for BiSSE, when the null models included both

the constant-rate scenario and the CID-2 model. Including HiSSE,

however, frequently increased the false positive rate relative to the

scenario where BiSSE was evaluated against CID-2 and constant-

rate models (20 out of 34 scenarios) and never decreased it. Note

that “BiSSE + HiSSE” in Figure 6 reflects all simulations where

one of the two true SDD models (BiSSE or HiSSE) provided a

better fit to the data than all other models in the candidate set. One

scenario stands out as causing all three methods (FiSSE, BiSSE

with or without CID-2, BiSSE + HiSSE) to incorrectly infer SDD

more than 10% of the time. This is a symmetric neutral trait sim-

ulated on an empirical tree, with a rapidly diversifying clade then

fixed (manually) to a single value of the trait (scenario 37).

Discussion
We have described a simple nonparameteric method, called

FiSSE, that can reliably test hypotheses about the effects of a

binary character on lineage diversification rates. We found the

method can detect state-dependent differences in diversification

rates on phylogenies with a modest number of tips, although

the method is demonstrably less powerful than a formal state-

dependent model (BiSSE) across many simulation scenarios we

considered. However, FiSSE also appears to be largely robust to

spurious inferences of state-dependent diversification. This is true

even on datasets generated under a broad range of empirically rel-

evant diversification scenarios that are problematic for the BiSSE

framework as traditionally applied (Figs. 4. and 5B).

Importantly, we also found that including a nontrivial null

model (CID-2 from the HiSSE framework) in the candidate

set for BiSSE analyses dramatically reduces the overall false
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positive rate for BiSSE, while maintaining statistical power (Fig.

6). Nonetheless, FiSSE’s false positive rates were generally lower

than those observed for the expanded BiSSE + HiSSE modeling

framework for a range of empirically relevant diversification sce-

narios. Given the substantial reduction in false positive rates ob-

tained by including CID-2, we agree with Beaulieu and O’Meara

(2016) that CID-2 (or similar) should be included as a null model

when performing BiSSE analyses. On the other hand, we found

that use of HiSSE, BiSSE, and CID-2 in concert frequently yielded

incorrect conclusions, with nine of 34 non-SDD scenarios having

false positive rates in excess of 0.25. These results are consistent

with those presented by Beaulieu and O’Meara (2016; e.g., their

Fig. 6).

Advantages of BiSSE-style models (including CID-2 and

HiSSE) relative to FiSSE include explicit parameter estimation

and increased statistical power, but FiSSE offers further reduc-

tions in false positive rates. There is thus a reason to view FiSSE

as providing an important check on the reliability of results ob-

tained with formal state-dependent models. Although we do not

believe that methods should generally be chosen based on compu-

tational speed, we also note that model-based SDD analyses are

computationally intensive relative to FiSSE analyses. The most

complex model-based analyses we performed required approx-

imately 100× – 1000× more CPU time to complete than the

corresponding FiSSE analyses.

Why is FiSSE generally robust to phylogenetic pseudorepli-

cation? Consider, for example, the extreme case of a single in-

crease in speciation rate and a single change in character state

along the same branch. When character histories are simulated un-

der a process with a very low transition rate, there will be only one

or few trait changes, and they could occur anywhere on the tree.

The null distribution of �� will thus have high variance, making

it difficult to detect true SDD when it is present. Conversely, this

high variance also makes it difficult to find significant evidence

for SDD when it is not present, thus reducing the influence of

phylogenetic pseudoreplication on the false positive rate. We see

this phenomenon in scenario 12, in which FiSSE fares poorly in

identifying SDD on trees simulated under the BiSSE model with

low q. In contrast, scenario 11 had the same state-dependent spe-

ciation and extinction as scenario 12 but a much higher transition

rate, and FiSSE performed nearly as well as BiSSE (the null dis-

tribution of �� had standard deviations 1.9 and 5.3 for scenarios

11 and 12, respectively). FiSSE fails to recognize pseudoreplica-

tion in scenario 37, however, because there are many character

changes on the tree outside of the rapidly diversifying clade that

has fixed state.

Why is FiSSE generally robust to complex diversification

rate heterogeneity? With many shifts in diversification across the

tree, there will be much variation in any subset of the �t tip values.

Regardless of how this variation is partitioned into the two states—

whether a neutral trait is evolving slowly or quickly—�� will

have high variance, again correctly reducing inferences of SDD.

In the interpretation of results obtained with FiSSE, we cau-

tion that the �k quasi-parameter is an imperfect measure of the

speciation rate and does not directly reflect extinction or net diver-

sification. The method has much less power than BiSSE to infer

state-dependent extinction (Fig. 1C). However, whether BiSSE or

any other method can usefully infer extinction rates when they

are as heterogeneous as in nature remains controversial (Rabosky

2010; Davis et al. 2013; Beaulieu and O’Meara 2015; Rabosky

2016). In general, we recommend that researchers compare the

values of the �k quasi-parameters to speciation and extinction

rates obtained from a formal state-dependent model. We sug-

gest that the strongest inference of state-dependent diversification

is one where FiSSE and BiSSE results are in agreement, where

BiSSE has been evaluated against the nontrivial CID-2 null model,

and where BiSSE’s speciation or net diversification estimates and

the FiSSE quasi-parameters are generally congruent.

Conceptually, FiSSE is related to the framework developed

by Bromham et al. (2016), who proposed a set of summary statis-

tics to assess the adequacy of the BiSSE model and various con-

strained submodels (e.g., λ1 = λ0, μ1 > μ0, q01 = q10). Their

procedure involves fitting a set of full and constrained BiSSE

models to the observed data and then simulating null distribu-

tions of phylogenies under each of the candidate models (Day

et al. 2016; Hua and Bromham 2016). This approach is substan-

tially more complex than FiSSE, which uses a fixed topology and

conditions only on an estimate of the number of state changes.

One advantage to the Bromham et al. (2016) framework is that

it provides an absolute test of model adequacy and can lead to

rejection of all models under consideration. The FiSSE approach

is also related to the test proposed by Freckleton et al. (2008) for

continuous characters. The Freckleton et al. (2008) test involves

computing a tip-specific measure of speciation rate from the den-

sity of nodes along the path leading from the root to the tips of the

tree. The relationship between those tip-specific rates and a trait

is assessed using Phylogenetic generalized least squares (PGLS).

Just as fitting models by approximate Bayesian computation

(Beaumont 2010) requires seemingly arbitrary decisions about

summary statistics, so does the FiSSE procedure involve arbitrary

(but intuitively motivated) decisions, such as the test statistic defi-

nition, the use of parsimony, and a symmetric-rates model for trait

evolution. Consequently, there are many other methods that could

be constructed along these same lines. For example, alternative

test statistics could describe the difference in diversification rates

between two character states, as in Bromham et al. (2016). The

encouraging results from FiSSE suggest that exploration of such

methods could be a worthwhile line of investigation to continue.

But because ad hoc methods like this cannot be rigorously jus-

tified on theoretical grounds, they can only be assessed based
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on their performance. A comprehensive suite of testing scenarios

is therefore especially important. We created such a suite here,

which we hope will be useful for and extended during the testing

of future methods.

Conclusions
We have developed a simple test for the effects of a binary charac-

ter on lineage diversification rates. Using a double-blind testing

procedure, we demonstrated the method has reasonable perfor-

mance across a range of simulation scenarios (Figs. 5 and 6). Our

results suggest two substantive recommendations for testing hy-

potheses about trait-dependent diversification involving discrete

character states. First, it seems clear that hypothesis tests with

BiSSE should incorporate one or more nontrivial null models,

following Beaulieu and O’Meara (2016). As we have shown, the

incorporation of one such model (CID-2) into the candidate set of

BiSSE-type models led to a dramatic reduction in false positive

rates across the range of testing scenarios. Second, we recommend

that hypothesis tests with FiSSE be included as a complement to

formal state dependent models. For BiSSE + HiSSE analyses, we

found that false positive rates were appreciably elevated in several

testing scenarios even when CID-2 was included as a null model.

We have shown that FiSSE can provide an additional check on

results obtained with the BiSSE family of models. We believe that

there is considerable value in further development of nonparamet-

ric and semi-parametric approaches for testing hypotheses about

trait-dependent diversification (Freckleton et al. 2008; Rabosky

and Huang 2015; Bromham et al. 2016). Such approaches pro-

vide a valuable complement to formal process-based models in

the quest to identify methods that are both powerful and robust to

phylogenetic pseudoreplication and model inadequacy.
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