
Using edgefx to compute the effects of

habitat edges on a landscape

Emma E. Goldberg & Leslie Ries

March 8, 2010

Contents

1 Background 1

2 Infinite edges 2
2.1 Response prediction from given parameter values . 2
2.2 Parameter estimation from data . 3

3 Vectorized landscapes 5
3.1 Input files . 5
3.2 Response prediction from given parameter values . 7
3.3 Parameter estimation from data . 7

3.3.1 Non-linear least squares, via nls() . 8
3.3.2 Generalized likelihood optimization and MCMC . 10

4 Gridded landscapes 15
4.1 Input files . 15
4.2 Response prediction from given parameter values . 16

1 Background

The edges of habitat patches affect species that live within the habitat. Often, edge effects are modeled
as a simple function of distance to the nearest edge. Edge structure can be much more complex than that
single-valued characterization, however. This package allows computation of edge effects due to all (or just
nearby) edges in a landscape. The models implemented in this package are an extension of a model proposed
by J. Malcolm (1994; Ecology 75:2438-45).

> library(edgefx)

Consider a response variable describing something about a species across space. For example, this could
be the density of individuals, or the height of plants. Call it z. Say there is a baseline value far from any
edges, k, and that edge effects cause deviations (either positive or negative) from this. Consider a particular
point on the landscape where z is or could be measured; call it the “focal” point. Consider a second point
that lies along a habitat edge and is a distance d from the focal point; call it the edge point. The effect of
the edge point on the focal point can be modeled simply as a “plateau point edge effect,”

f(d) =

e0 d ≤ D0

e0

(
1 + D0−d

Dmax−D0

)
D0 < d ≤ Dmax

0 d > Dmax

(1)

1

where e0 characterizes the maximum effect, D0 is the distance out to which the maximum effect is felt, and
Dmax is the maximum distance at which any effect is felt. To see what f(d) looks like, use point.edge.effect():

> params <- list(e0 = -0.3, Dmax = 50, D0 = 20)

> d <- seq(params$Dmax * 1.1)

> plot(d, sapply(d, point.edge.effect, params), type = "l", lwd = 2,

+ xlab = "distance", ylab = "f(d)", main = "plateau point edge effect")

0 10 20 30 40 50

−
0.

30
−

0.
25

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

plateau point edge effect

distance

f(
d)

The simplest way of dealing with edges is to consider only the distance to the nearest edge, dmin, for
each focal point [at position (x, y)], yielding

z(x, y) = k + f(dmin). (2)

But this ignores the effects of other edge points, many of which may also be nearby. More complete
would be to sum over all edge points within distance Dmax, Γ, yielding

z(x, y) = k +
∫

Γ

f(s) ds. (3)

There are functions in edgefx to evaluate (3) for idealized infinite-extent edges, vector-based descriptions
of finite habitat edges, and gridded habitat maps. Many of these procedures also allow estimation of the
parameters in (1) from such data.

2 Infinite edges

2.1 Response prediction from given parameter values

As an idealized case, consider an edge that is linear and infinite in extent. To evaluate (3) at a range of
distances from the edge, using the plateau point edge effect shown above, use infinite.edge.effect():

2

> params$k = 50

> plot(d, sapply(d, infinite.edge.effect, params), type = "l",

+ lwd = 2, xlab = "distance", ylab = "z", main = "effect of infinite edge")

0 10 20 30 40 50

30
35

40
45

50

effect of infinite edge

distance

z

2.2 Parameter estimation from data

Suppose you have edges in your landscape that approximate linear, infinite edges (or they don’t really, but
you want to make that assumption for comparison purposes). If you have observed values of your response
variable, z, at a variety of distances from infinite edges, d, you can fit for the parameters in the point edge
effect function ((1)).

To see this in action, first generate some fake data:

> params <- list(e0 = -0.3, Dmax = 100, D0 = 50, k = 50)

> d <- seq(0, 200, 1)

> set.seed(3)

> z <- sapply(d, infinite.edge.effect, params) + rnorm(length(d))

Now use non-linear least squares to fit the infinite edge function, with and without the D0 parameter. You
must provide some initial parameter guesses. Model convergence may be tricky, so best to run with several
sets of initial values. Also, you may want to set the lower bound on k to 0 if that is what’s physically
appropriate for your response variable.

> nls.4par <- nls(z ~ sapply(d, infinite.edge.effect, e0, Dmax,

+ k, D0), start = list(e0 = -0.5, Dmax = 100, D0 = 40, k = 70),

+ algorithm = "port", lower = list(e0 = -Inf, Dmax = 0, k = -Inf,

+ D0 = 0))

> nls.3par <- nls(z ~ sapply(d, infinite.edge.effect, e0, Dmax,

+ k), start = list(e0 = -0.5, Dmax = 100, k = 70), algorithm = "port",

3

+ lower = list(e0 = -Inf, Dmax = 0, k = -Inf))

> summary(nls.4par)

Formula: z ~ sapply(d, infinite.edge.effect, e0, Dmax, k, D0)

Parameters:
Estimate Std. Error t value Pr(>|t|)

e0 -0.301021 0.002279 -132.11 <2e-16 ***
Dmax 99.484351 0.560776 177.41 <2e-16 ***
D0 50.274991 0.906140 55.48 <2e-16 ***
k 49.997262 0.097512 512.73 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9888 on 197 degrees of freedom

Algorithm "port", convergence message: relative convergence (4)

> summary(nls.3par)

Formula: z ~ sapply(d, infinite.edge.effect, e0, Dmax, k)

Parameters:
Estimate Std. Error t value Pr(>|t|)

e0 -0.455647 0.005678 -80.25 <2e-16 ***
Dmax 107.938237 0.890337 121.23 <2e-16 ***
k 50.171318 0.197539 253.98 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.936 on 198 degrees of freedom

Algorithm "port", convergence message: relative convergence (4)

To see the fits:

> plot(d, z)

> lines(d, predict(nls.4par))

> lines(d, predict(nls.3par), lty = 2)

4

●
●●
●
●●●

●

●

●

●●●
●●●●●

●
●●●

●
●
●●

●●
●
●

●●●
●
●
●
●
●
●

●●●

●

●

●

●

●

●
●●

●
●

●
●
●

●●

●●●

●
●●
●

●
●
●

●
●

●●
●
●●
●
●
●●
●
●

●
●

●
●●●

●●

●
●●
●
●

●
●
●●
●
●
●
●
●
●●●●●

●
●
●
●●●

●

●●
●●●●

●

●●
●
●
●
●
●
●

●●●
●

●

●

●

●

●●●●
●
●
●
●●

●●

●
●

●

●

●●●●●
●●

●

●
●●
●●
●●

●

●●●
●
●
●●

●
●

●●
●
●
●
●●
●●
●

●
●

●
●
●
●●

●

●
●●
●●●

0 50 100 150 200

10
20

30
40

50

d

z

To perform an AIC test of the two models:

> AIC(nls.3par) - AIC(nls.4par)

[1] 269.0385

The four-parameter model fits better (lower AIC score), but not substantially so (difference is less than 2).
(But be a bit careful about potential bugginess in the nls methods of AIC and logLik.)

See Section 3.3.1 for notes on the nls options and convergence messages. It also shows a different method
of fitting infinite edges using fake maps.

3 Vectorized landscapes

A real habitat won’t consist solely of an infinite linear edge, but it can be approximated as a collection of
finite edge line segments. Once you’ve turned the habitat edges in your landscape into line segments, you can
use those edge descriptions to (1) predict values of the response variable z(x, y) using given parameter values
(obtained through estimation or elsehow), and/or (2) use observed values of z to estimate the parameters in
the point edge effect function, e0, k, D0, and Dmax.

3.1 Input files

You should have a single input file for each focal point, containing the coordinates of the focal point and
all the relevant edge segments. This package does not provide facilities for automatic identification of edges
from general maps. Leslie will have notes on how best to get appropriate input files from GIS. But the
per-focal-point files allow better customization of exactly which edge segments are “visible” to each focal
point (e.g. don’t include edges that are hidden behind other edges).

Here is an example of an input file:

5

a comment
30, 50, , , focalhabitat
0, 0, 0, 100, edge1habitat
0, 0, 40, 20, edge2habitat
40, 20, 100, 100, edge3habitat

The origin of the coordinate system is arbitrary. The first non-comment line gives the x and y coordinates
of the focal point; it needs two extra commas so R doesn’t freak out about mis-matched numbers of columns.
The rest of the lines are for the endpoints of each edge segment. The first edge extends from (0, 0) to (0,
100), the second from (0, 0) to (0, 40), etc. The last column is for notes about the habitat types, or whatever
you want. Actually, you can have as many trailing columns as you want; their contents are ignored so far.

We’ve included a collection of simple edge input files for use here. You will have to identify where on your
system they were installed; try looking somewhere like /usr/local/lib/R/site-library/edgefx/doc/inputfiles/;
for the compilation of this documentation, it is just inputfiles/. You should define prefix to be wherever
you find them. Let’s read the example files into a list.

> prefix <- "inputfiles/"

> filenames <- c("edge1a.dat", "edge1b.dat", "edge1c.dat", "edge1d.dat",

+ "edge1e.dat", "edge2a.dat", "edge2b.dat", "edge2c.dat", "edge2d.dat",

+ "edge2e.dat")

> edgefilenames <- paste(prefix, filenames, sep = "")

> edgelist <- lapply(edgefilenames, read.table, sep = ",")

> names(edgelist) <- filenames

Our edgelist now has ten elements, one for each file. Here’s what the first one looks like:

> edgelist[[1]]

V1 V2 V3 V4 V5
1 30 50 NA NA habitat1
2 0 0 0 100 habitat2
3 0 0 40 20 habitat2
4 40 20 100 100 habitat2

> draw.edges(edgelist[[1]])

> title(names(edgelist)[[1]])

6

0 20 40 60 80 100

0
20

40
60

80
10

0

c(xs, edgedat[1, 1])

c(
ys

, e
dg

ed
at

[1
, 2

])

●

edge1a.dat

The focal point is shown in orange, and its edges are shown in blue.
In our example, the first five input files all have the same edges but different focal points, and the same

for the second five. You can combine analysis for whatever files you want, provided that you expect (or are
willing to assume) that the same parameter values apply to all of them.

3.2 Response prediction from given parameter values

Suppose that you have in hand a set of parameter values (possibly obtained from data fitting; see Section
3.3) and a vectorized map like the one just shown. To predict the value of the response variable at the map’s
focal point, given the edges in the map and the parameter values, use vecmap.edge.effect():

> params <- list(e0 = -0.3, Dmax = 40, k = 100, D0 = 15)

> vecmap.edge.effect(edgelist[[1]], params)

[1] 88.80376

3.3 Parameter estimation from data

Now suppose that at each of the focal points, we have data on the value of the response variable z. Read in
those observed values, along with the map names indicating which observations go with which set of edges.

> z.obs <- read.table(paste(prefix, "edgez.dat", sep = ""), header = T)

> z.obs

map z
1 edge1a 83.95431
2 edge1c 72.98649
3 edge1e 82.36007
4 edge2b 92.20720

7

5 edge2d 87.98545
6 edge1b 69.62626
7 edge1d 74.63733
8 edge2a 78.00661
9 edge2c 84.14898
10 edge2e 86.71185

Described next are two possible approaches for obtaining parameter estimates and their uncertainties
from these data.

3.3.1 Non-linear least squares, via nls()

To estimate the parameter values, assuming normally-distributed errors, we can do a nonlinear least squares
fit to the plateau point edge function integrated over all the edges for each focal point. So our dependent
variable is z.obs$z and our independent variables come from the application of (3) to each matrix in
edgelist. We need to provide a rough guess of the parameter values in order for nls() to get started.
Again, the procedure is sensitive to starting parameters, especially when data are variable. We suggest using
a range of starting values to determine if your models converge on the same solution.

> guess <- list(e0 = -0.1, Dmax = 80, k = 50, D0 = 5)

> edgefit <- edge.nls(edgelist, z.obs$z, guess)

You can pass additional arguments to nls() after guess, e.g., trace=T. To see how the fit did, use the
result as you would any nls object, e.g.,

> summary(edgefit)

Formula: observed ~ by(edges[, 2:4], xvals, map.edge.effect, e0, Dmax,
k, D0)[unique(xvals)]

Parameters:
Estimate Std. Error t value Pr(>|t|)

e0 -0.27611 0.02547 -10.839 3.65e-05 ***
Dmax 42.47617 3.34888 12.684 1.47e-05 ***
k 97.20525 1.67003 58.206 1.73e-09 ***
D0 16.64404 3.40071 4.894 0.00273 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.692 on 6 degrees of freedom

Algorithm "port", convergence message: relative convergence (4)

> library(MASS)

> edgefit.profile <- profile(edgefit)

> confint(edgefit.profile)

2.5% 97.5%
e0 NA -0.2143116
Dmax NA 49.8745073
k 93.46509 101.3459460
D0 NA NA

8

Unfortunately, the port algorithm is required in order to constrain D0 and Dmax to be non-negative (this
is applied within edge.nls), but port is “unfinished” (according to the nls help page). One consequence is
that the profile and confint functions don’t work reliably with nls results when port is used. But you’ll
have the standard errors from summary, even if confint gives NAs.

Support for a non-zero value of D0 is pretty strong in this example, but often it isn’t. To fit Malcolm’s
original point edge effect function rather than the plateau function, just omit D0:

> guess <- list(e0 = -0.1, Dmax = 80, k = 50)

> edgefit <- edge.nls(edgelist, z.obs$z, guess)

> summary(edgefit)

Formula: observed ~ by(edges[, 2:4], xvals, map.edge.effect, e0, Dmax,
k)[unique(xvals)]

Parameters:
Estimate Std. Error t value Pr(>|t|)

e0 -0.3746 0.0415 -9.027 4.18e-05 ***
Dmax 44.0713 3.4590 12.741 4.25e-06 ***
k 96.5783 1.9805 48.764 3.99e-10 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.942 on 7 degrees of freedom

Algorithm "port", convergence message: relative convergence (4)

> edgefit.profile <- profile(edgefit)

> confint(edgefit.profile)

2.5% 97.5%
e0 -0.4700749 -0.2862819
Dmax 38.4377327 51.4741232
k 92.4350263 101.3855908

If you get a convergence message of anything other than (0) from nls (like the (4) we got here), it’s
best to try a variety of values for guess.

The function edge.nls() just provides a convenient wrapper to nls(). In case you want to tweak nls’s
options yourself (or maybe try something else, like nls2), here are the extra steps to take. You can omit D0
from formula and guess if you want. (Note: I don’t know why xvals and z have to be defined separately,
but R has a fit if they aren’t.)

> edges <- relocate.edge.df(edgelist)

> xvals <- edges[, 1]

> z <- z.obs$z

> edge.formula <- formula(z ~ by(edges[, 2:4], xvals, map.edge.effect,

+ e0, Dmax, k, D0))

> guess <- list(e0 = -0.1, Dmax = 80, k = 50, D0 = 5)

> fit <- nls(edge.formula, start = guess, algorithm = "port", lower = list(e0 = -Inf,

+ Dmax = 0, k = -Inf, D0 = 0))

An alternative method for fitting to the infinite edge function (see Section 2.2) is to use the above
procedure (or the one below, with optim or MCMC) but to replace the data frame of map information,
edges above, with values that represent infinite edges, inf.edges here:

9

> n <- length(d)

> inf.edges <- data.frame(mapnames = paste("map", seq(n), sep = ""),

+ x0 = d, y1 = rep(-Inf, n), y2 = rep(Inf, n))

> head(inf.edges)

mapnames x0 y1 y2
1 map1 0 -Inf Inf
2 map2 1 -Inf Inf
3 map3 2 -Inf Inf
4 map4 3 -Inf Inf
5 map5 4 -Inf Inf
6 map6 5 -Inf Inf

3.3.2 Generalized likelihood optimization and MCMC

An alternative to constrained optimization with nls is to deal with the (log)likelihood of the data directly,
which the function edge.lnL() provides. For Gaussian errors, the log-likelihood is proportional to the sum-
of-squared-differences, so using a general-purpose optimizer like optim() with edge.lnL() is in principle the
same as using nls(), though you can specify different algorithms and ways to constrain parameter values.
For Poisson errors, the likelihood function is computed slightly differently, but it can be used in the same
way.

To use optim() directly (rather than through a wrapper as for edge.nls()) to obtain maximum likelihood
parameter estimates, we have to abide by its rules. Specifically, the initial guess must be a vector (which
can be obtained from a list by unlist(); if instead its elements are unnamed, they must be in the order
e0, Dmax, k, and optionally D0) and the value is minimized so the negative log-likelihood must be used
(obtained from edge.lnL() with neg=TRUE). Additionally, it’s a bit faster to pass optim the relocated edge
dataframe (obtained via relocate.edge.df()) rather than the raw edge list.

Here is a sequence of examples:

> guess <- unlist(guess)

> edges <- relocate.edge.df(edgelist)

> optim(guess, edge.lnL, NULL, edges, z.obs$z, neg = T)

$par
e0 Dmax k D0

-0.3554509 1171.5757913 170.1661713 53.6657135

$value
[1] 367.7956

$counts
function gradient

501 NA

$convergence
[1] 1

$message
NULL

Consult the optim() documentation to see that a convergence value of 1 indicates that the iteration limit
has been reached. We can tell optim() to try for longer, though it turns out it was pretty close already:

10

> optim(guess, edge.lnL, NULL, edges, z.obs$z, neg = T, control = list(maxit = 1000))

$par
e0 Dmax k D0

-0.3553188 1171.2919167 170.1306333 53.6656399

$value
[1] 367.7954

$counts
function gradient

507 NA

$convergence
[1] 0

$message
NULL

The convergence value of 0 now indicates that the optimization was successful. The maximum-likelihood
parameter estimates are given by $par, but these values are quite different from those from the nls() fit.
We can find a higher likelihood (lower $value) by using different starting values:

> guess <- c(e0 = -0.3, Dmax = 50, k = 100, D0 = 5)

> optim(guess, edge.lnL, NULL, edges, z.obs$z, neg = T)

$par
e0 Dmax k D0

-0.2761111 42.4766116 97.2051586 16.6432461

$value
[1] 17.17024

$counts
function gradient

237 NA

$convergence
[1] 0

$message
NULL

Now the agreement with the nls result is perfect.
When an optimization method is not specified, the default is Nelder-Mead and the parameter constraints

are taken care of by returning a likelihood value of -Inf when Dmax < 0 or D0 < 0. You could instead use
the quasi-Newton method with box constraints on the parameter values (see the optim() documentation,
and be sure that the order in lower matches that in guess):

> optim(guess, edge.lnL, NULL, method = "L-BFGS-B", lower = c(-Inf,

+ 0, -Inf, 0), edges, z.obs$z, neg = T)

$par
e0 Dmax k D0

11

-0.2761129 42.4761864 97.2052726 16.6440494

$value
[1] 17.17024

$counts
function gradient

71 71

$convergence
[1] 0

$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

To fix D0 = 0, simply omit it from the guess:

> guess <- c(e0 = -0.3, Dmax = 50, k = 100)

> optim(guess, edge.lnL, NULL, edges, z.obs$z, neg = T)

$par
e0 Dmax k

-0.3746541 44.0709961 96.5786155

$value
[1] 26.39620

$counts
function gradient

140 NA

$convergence
[1] 0

$message
NULL

Everything above also applies to Poisson errors, which you can request with family="poisson". Note
that your observed values must be positive integers—this should be intrinsically true for real data, but it
must be forced in this illustration:

> guess <- c(e0 = -0.3, Dmax = 50, k = 100, D0 = 5)

> optim(guess, edge.lnL, NULL, edges, as.integer(z.obs$z), neg = T,

+ family = "poisson")

$par
e0 Dmax k D0

-0.2801185 42.5425990 96.6676219 16.0719042

$value
[1] 31.28194

$counts

12

function gradient
195 NA

$convergence
[1] 0

$message
NULL

Poisson errors often don’t work well with method="L-BFGS-B" because negative predicted values must return
a likelihood of -Inf, which this method apparantly can’t handle.

Unlike nls(), optim() does not produce a structure for use by functions like confint. You could still
map out the likelihood surface to get confidence intervals, but I couldn’t find general-purpose R functions
for that. Or you could try fitting with optim() and then use those as starting values in nls() to get results
back as a nice structure.

Alternatively, issues like uncertainty and correlation in the parameter estimates can be addressed by
obtaining posterior distributions from Markov chain Monte Carlo. You will have to learn about proper use
of MCMC elsewhere, including diagnosing convergence, but here is an example to start with. (It could also
take family="poisson", presumably.) The initial values are informed by the optim() results, to reduce the
burn-in time. The tuning values were chosen by experimentation to yield an acceptance probability of about
20%. The thinning interval was chosen after looking at autocorrelation plots (acf() is useful for this). It
takes awhile to run.

> library(MCMCpack)

> guess <- c(e0 = -0.3, Dmax = 50, k = 100, D0 = 20)

> edgemcmc = MCMCmetrop1R(edge.lnL, guess, burnin = 1000, mcmc = 201000,

+ thin = 200, tune = c(0.1, 1, 1, 1), optim.method = "Nelder-Mead",

+ edgecoord = edges, observed = z.obs$z)

@@@
The Metropolis acceptance rate was 0.26666
@@@

> plot(edgemcmc)

13

0 50000 100000 150000 200000

−
0.

31
−

0.
27

Iterations

Trace of var1

−0.32 −0.30 −0.28 −0.26

0
10

20
30

N = 1005 Bandwidth = 0.00284

Density of var1

0 50000 100000 150000 200000

40
42

44
46

Iterations

Trace of var2

40 42 44 46

0.
00

0.
20

N = 1005 Bandwidth = 0.2997

Density of var2

0 50000 100000 150000 200000

96
98

Iterations

Trace of var3

95 96 97 98 99 100

0.
0

0.
3

0.
6

N = 1005 Bandwidth = 0.1701

Density of var3

0 50000 100000 150000 200000

10
14

18

Iterations

Trace of var4

10 15 20

0.
00

0.
15

N = 1005 Bandwidth = 0.405

Density of var4

> summary(edgemcmc)

Iterations = 1001:201801
Thinning interval = 200
Number of chains = 1
Sample size per chain = 1005

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
[1,] -0.2788 0.01068 0.0003368 0.001690
[2,] 42.7434 1.12665 0.0355390 0.042792
[3,] 97.2555 0.63961 0.0201759 0.042251
[4,] 16.0457 1.60456 0.0506142 0.114726

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
var1 -0.3015 -0.2861 -0.2781 -0.2704 -0.2618

14

var2 40.6454 41.9654 42.6749 43.4879 45.2359
var3 95.9890 96.8341 97.2294 97.6966 98.4394
var4 12.3598 15.1368 16.1176 17.1772 18.8182

4 Gridded landscapes

As mentioned above, edgefx does not have sophisticated edge-detection functions. For a gridded landscape,
the most it will do is identify as edges the cells of non-habitat (“matrix,” but I’ll avoid that term since it
is also an R data structure) that have, among their four neighboring cells, at least one habitat cell. The
response value z at each cell in the landscape can then be predicted as the sum of effects from all identified
edge cells.

The distance between two cells is defined to be 1 for adjacent cells, and can be found for any pair of cell
coordinates like so:

> distance(c(2, 3), c(4, 7))

[1] 4.472136

If you have existing parameter estimates and want to apply them here, you may have to do a unit conversion.
The exact conversion will depend on what you have, but here is an example. Say your observations, z, are
the number of individuals per grid cell of size length a. And say that when you estimated the edge function
parameters (e0, Dmax, k, and maybe D0), you gave distances in meters rather than number of grid cells.
Since Dmax and D0 have units of length, the adjusted values you should use with the unit grid cells here are
D′max = Dmax/a and D′0 = D0/a. Since k already has units of per grid cell, k′ = k. Since e0 has units of
individuals per length, e′0 = e0 × a.

4.1 Input files

Here is an example of an input file for a gridded landscape. Note that 0 signifies non-habitat, any other
positive number signifies habitat, and spaces signify borders between cells (this allows habitat codes of more
than one digit).

0 0 0 0 0 0 0 0 0 0 2 2 2 2
1 1 1 1 1 0 0 0 0 0 0 2 2 2
1 1 1 1 0 0 0 0 0 0 2 2 2 2
1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 1 1

Let’s read that particular habitat file into a matrix:

> map <- read.table(paste(prefix, "smallgrid.dat", sep = ""))

> map <- data.matrix(map)

I found it easier to visualize the landscape with slightly different formatting. The function write.grid()
produces a file, whose contents are printed below. You can find the example files near the prefix you defined
above (replace inputfiles with outputfiles).

> write.grid(map, "outputfiles/smallgrid.map")

....
..... ...
....
...
...
...... ..

15

The next step is to identify the cells that are edges. This can be slightly slow for a large landscape. You
may also want to write those results to a file for visualization/checking.

> edges <- find.edges(map)

> write.edges(map, edges, "outputfiles/smallgrid.edge")

creates a file that contains:

xxxxx x
x x
x x
x xxxx
xxx xx

x x

4.2 Response prediction from given parameter values

To compute the response value for each cell, we first need to provide parameter values for the plateau point
edge effect function.

> params <- list(e0 = -0.3, k = 5, D0 = 0, Dmax = 10)

Then we can use grid.effects() to treat each habitat cell in turn as the focal cell and compute its
response value, z. This step can be slow for a large grid and large values of Dmax.

> z <- grid.effects(map, edges, params)

The result is a vector with one item per cell, ordered by column (read down column 1, then read down
column 2, etc.). These values are the predicted responses for habitat cells, and NA for non-habitat cells. If
you didn’t want to include some cells identified as edges, you could just remove them from edges before
calling grid.effects().

To print the results in either tabular or graphic form, you have to take some care to get the orientation
of the landscape right. For example, here is how to view z in the same orientation as the map:

> matrix(z, ncol = ncol(map))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] NA NA NA NA NA NA NA NA NA NA
[2,] 2.757224 2.391091 2.064658 1.761261 1.509462 NA NA NA NA NA
[3,] 2.778329 2.406429 2.046681 1.702641 NA NA NA NA NA NA
[4,] 2.867153 2.501380 2.121457 NA NA NA NA NA NA NA
[5,] 3.019753 2.676498 2.302272 NA NA NA NA NA NA NA
[6,] 3.221152 2.925479 2.582877 2.249200 1.953873 1.756154 NA NA NA NA

[,11] [,12] [,13] [,14]
[1,] 2.005296 2.304855 2.648967 2.989033
[2,] NA 2.016763 2.371094 2.747569
[3,] 1.555564 1.826897 2.168306 2.565966
[4,] NA NA NA NA
[5,] NA NA NA NA
[6,] NA NA 2.388755 2.727175

And here is how to write a file for z that has the same cell layout as the input file.

> write.table(matrix(z, nrow = nrow(map)), file = "outputfiles/smallgrid.z",

+ na = "NA", quote = F, sep = " ", row.names = F, col.names = F)

16

If your input map had a variety of habitat codes and you want to extract the values of z that go with
each, you can do it like this.

> m <- as.vector(as.matrix(map))

> hcodes <- list(one = 1, two = 2)

> sapply(hcodes, f <- function(x) z[m == x])

$one
[1] 2.757224 2.778329 2.867153 3.019753 3.221152 2.391091 2.406429 2.501380
[9] 2.676498 2.925479 2.064658 2.046681 2.121457 2.302272 2.582877 1.761261
[17] 1.702641 2.249200 1.509462 1.953873 1.756154 2.388755 2.727175

$two
[1] 2.005296 1.555564 2.304855 2.016763 1.826897 2.648967 2.371094 2.168306
[9] 2.989033 2.747569 2.565966

To plot the results, turn z into a matrix in what seems like the wrong orientation:

> z <- matrix(z, byrow = T, ncol = nrow(map))

Here’s a basic plot of the result.

> filled.contour(seq(ncol(map)), seq(nrow(map)), z, ylim = c(nrow(map),

+ 1), color.palette = gray.colors)

1.5

2.0

2.5

3.0

2 4 6 8 10 12 14

6

5

4

3

2

1

(You might instead want to use contourplot from the lattice package, which uses a clearer formula
notation.)

That’s not such an exciting landscape. Here’s a more elaborate one (the interior areas are black, but it
seems that gets lost in the pdf conversion):

17

> map <- read.table(paste(prefix, "biggrid.dat", sep = ""))

> map <- data.matrix(map)

> edges <- find.edges(map)

> params <- list(e0 = -0.3, k = 12, D0 = 0, Dmax = 10)

> z <- grid.effects(map, edges, params)

> z <- matrix(z, byrow = T, ncol = nrow(map))

> label <- substitute(expression(paste(e[0], " = ", e0, ", ", D[max],

+ " = ", Dmax, ", k = ", kval)), list(e0 = params$e0, Dmax = params$Dmax,

+ kval = params$k))

> filled.contour(seq(ncol(map)), seq(nrow(map)), z, ylim = c(nrow(map),

+ 1), col = gray.colors(20, 1, 0.1), levels = seq(0, params$k,

+ len = 21), main = eval(label))

0

2

4

6

8

10

12

50 100 150 200 250

250

200

150

100

50

e0 = −0.3, Dmax = 10, k = 12

If the computations are slow and you only want responses predicted for a portion of your landscape, you
can create a dataframe of focal cell coordinates and just use those. For example, to predict on just a strip
in the upper left corner:

> focals <- data.frame(row = rep(seq(5), 2), col = c(rep(1, 5),

+ rep(2, 5)))

> focals

row col
1 1 1
2 2 1
3 3 1
4 4 1
5 5 1
6 1 2
7 2 2

18

8 3 2
9 4 2
10 5 2

> z <- apply(focals, 1, grid.edge.effect, edges, map, params)

19

	Background
	Infinite edges
	Response prediction from given parameter values
	Parameter estimation from data

	Vectorized landscapes
	Input files
	Response prediction from given parameter values
	Parameter estimation from data
	Non-linear least squares, via nls()
	Generalized likelihood optimization and MCMC

	Gridded landscapes
	Input files
	Response prediction from given parameter values

